Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.8.438

Film Properties of Al Thin Films Depending on Process Parameters and Film Thickness Grown by Sputter  

Oh, Il-Kwon (School of Electrical and Electronics Engineering, Yonsei University)
Yoon, Chang Mo (School of Electrical and Electronics Engineering, Yonsei University)
Jang, Jin Wook (Samsung Electronics Test & Package Center)
Kim, Hyungjun (School of Electrical and Electronics Engineering, Yonsei University)
Publication Information
Korean Journal of Materials Research / v.26, no.8, 2016 , pp. 438-443 More about this Journal
Abstract
We developed an Al sputtering process by varying the plasma power, process temperature, and film thickness. We observed an increase of hillock distribution and average diameter with increasing plasma power, process temperature, and film thickness. Since the roughness of a film increases with the increase of the distribution and average size of hillocks, the control of hillock formation is a key factor in the reduction of Al corrosion. We observed the lowest hillock formation at 30 W and $100^{\circ}C$. This growth characteristic of sputtered Al thin films will be useful for the reduction of Al corrosion in the future of the electronic packaging field.
Keywords
Al thin films; sputtering; corrosion; process parameter; hillock distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Harman, Wirebonding in Microelectronics, Chap. 5, McGraw Hill, New York (2010).
2 X. J. Fan and E. Suhir, Moisture Sensitivity of Plastic Packages of IC Devices, Chap. 2, Springer (2010).
3 S. H. Ahn, T. J. Cho, Y. S. Kim, and S. Y. Oh, in Proceedings of the 46th ECTC (1996) p.107.
4 S. Kang and P. S. Ho, J. Electron. Mater., 26, 805 (1997).   DOI
5 S. Hyun, W. L. Brown and R. P. Vinci, Appl. Phys. Lett., 83, 4411 (2003).   DOI
6 J. M. Abdel Kader and A. M. Shams El Din, Corros. Sci., 10, 551 (1970).   DOI
7 S. S. Sampat and J. C. Vora, Corros. Sci., 14, 591 (1974).   DOI
8 L. A. Shalaby, K. M. El Sobki and A. A. Abdel Azim, Corros. Sci., 16, 637 (1976).   DOI
9 G. A. El Mahd and S. S. Mahmoud, Corros. Sci., 51, 436 (1995).   DOI
10 N. C. Subramanyam, B. S. Sheshardi and S. M. Mayanna, Corros. Sci., 34, 563 (1993).   DOI
11 R. Chattopadhyay, Surface Wear: analysis, treatment, and prevention, 1st ed., ASM International, USA (2001).
12 W. Li and D. Y. Li, Acta Mater., 54, 445 (2006).   DOI
13 John A. Thornton. J. Vac. Sci. Technol. A, 12, 4 (1975).
14 A. K. Maayta and N. A. F. Al-Rawashdeh, Corros. Sci., 46, 1129 (2004).   DOI
15 K. Kusaka, D. Taniguchib, T. Hanabusaa and K. Tominagaa, Vacuum, 59, 806 (2000).   DOI
16 S.-J. Hwang, J.-H. Lee, C.-O. Jeong and Y.-C. Joo, Scripta Mater., 56, 17 (2007).   DOI
17 F. M. D'Heurle, Metall. Mater. Trans. B, 1, 725 (1970).   DOI
18 W. Tang, K. Xua, P. Wang and X. Lib, Microelectron. Eng., 66, 445 (2003).   DOI
19 Yu. V. Milman, S Luyckx, V. A Goncharuck and J. T Northrop, Int. J. Refractory Met. Hard Mater., 17, 39 (1999).   DOI
20 O. Sarikaya, Surf. Coat. Technol., 190, 388 (2005).   DOI