Exploration of Engineering Professors' Teaching Orientations toward Engineering Courses

공과대학 교수학습의 질적 향상을 위한 공학 교수자의 교수지향 탐색

  • Jang, Jiyoung (Innovation Center for Engineering Education, Sungkyunkwan University) ;
  • Lee, Hyunju (Department of Science Education, Ewha Womans University)
  • 장지영 (성균관대학교 공학교육혁신센터) ;
  • 이현주 (이화여자대학교 과학교육과)
  • Received : 2016.04.27
  • Accepted : 2016.05.25
  • Published : 2016.05.31

Abstract

Teaching orientations represent teachers' general way of conceptualizing their teaching. The orientations are regarded as a very important factor in developing teachers' pedagogical content knowledge because they often guide their instructional decisions such as the selection of contents and teaching strategies, the use of curricula materials, and the evaluation of learning. Thus, understanding teachers' orientations can provide meaningful suggestions to understand their instructional approaches and furthermore to enhance the quality of engineering education in college. The research question for this present study was what kinds of teaching orientations engineering professors possessed in teaching engineering courses and how the orientations were represented in their teaching. Six engineering professors, particularly interested in instructional approaches, participated in the research. The data sources included in-depth interviews with individual professors, classroom observations with field notes, and related documents. In results, four teaching orientations toward engineering courses were identified: 1) expert knowledge in engineering, 2) engineering practice, 3) social practice, and 4) interdisciplinary design. Individual professors had between one to three different teaching orientations. Even though the professors had similar orientations but their instructional strategies somewhat varied based on the disciplines.

Keywords

References

  1. 김기수 외(2013). 초중등 공학교육 강화방안 정책연구. 한국과학창의재단, 교육과학기술부.
  2. 김명소 외(2007). 팀 구성원의 성별에 따른 팀웍 역량의 구성요인 차이에 관한 연구: 대학생을 중심으로. 한국심리학회 연차학술대회 논문집, 경주.
  3. 김영욱(2009). 어머니, 내 어머니 아직도 제 꿈 꾸고 계시나요?. 地盤, 25(12):31-34.
  4. 김유태(1995). 21세기 인간과 공학. 서울: 고려원미디어.
  5. 김장호 외(2010). 토목공학분야의 개선된 종합설계과목의 필요성 및 적용. 공학교육연구, 13(6):152-163.
  6. 김재영 외(2011). 한국공학교육학회 학회지편집위원회 좌담회. 공학교육, 19(6):9-14.
  7. 김진수.최유현.김수경(2008). 공과대학 교수들의 공학교육 연수실태와 교육요구 분석. 공학교육연구, 11(2):50-64.
  8. 박지호.전영우.김영욱(2012). 토목환경공학과 특성을 고려한 공학입문설계 학습지도 사례연구. 공학교육연구, 15(2):52-57.
  9. 박현숙.허은(2009). 고등학교 역사교사의 내용지식과 교수내 용지식에 대한 탐색. 역사교육연구, 10: 123-155.
  10. 송건섭(2002). 교수방법 평가 및 개선에 관한 연구. 사회과학연구, 10(2):8-9.
  11. 윤태웅(2010). 창의적인 전문가, 어떻게 키워낼 것인가?. 공학교육, 17(4):22-24.
  12. 윤태웅(2013). 확실한 수학, 불완전한 수학. 고려대학교 대학원 전기전자과 정기세미나, 2013. 5. (https://www.youtube.com/watch?v=RMvVxr8czTU)
  13. 윤태웅(2014). 학제간 소통은 왜, 어떻게 해야 하나?-공학수학 교육과 소통: 전공 속 교양교육. 공학교육컨퍼런스, 2014. 4. (https://www.youtube.com/watch?v=OsUO49F7mXY)
  14. 이상원(2010). 다학제 융합 종합설계 교육. 대한기계학회 2010년 추계학술대회 강연 및 논문 초록집, 2010. 11: 4524-4527.
  15. 이순덕.정은경.오선아(2009). 대학교수의 인식론적 신념과 교수방법의 관계. 한국교육논단, 8(1):79-100.
  16. 장인옥(2004). 초등학교 교사의 수학에 관한 신념과 교수 실제. 초등교과교육연구, 5: 55-76.
  17. 조벽(1995). 공학교육 교수론. 공학기술, 2(3):16-19.
  18. 조윤성.조경숙(2006). 환경 실험을 활용한 통합과학교육 프로그램 개발 사례 연구. 대한환경공학회 춘계학술연구발표회 논문집, 2006. 4: 1006-1013.
  19. 조현철(2005). 성, 학년 및 전공영역에 따른 대학생들의 인식 론적 신념. 청소년학연구, 12(4):232-382.
  20. 최미숙(2004). 교사경력 및 기관유형에 따른 유아교사의 교육 신념 연구. 유아교육연구, 24(1):29-47.
  21. 최혜영.이은혜(2005). 아동의 또래 상호작용과 교사신념 및 교사행동 간의 관계. 유아교육연구, 25(5):319-342.
  22. 한경희(2010). 세상이 변화시킨 공학, 공학이 변화시킨 세계. 공학교육, 17(3):16-18.
  23. 홍성욱(1994). 과학과 기술의 상호작용: 지식으로서의 기술과 실천으로서의 과학. 창작과 비평, 겨울호(86):329-350.
  24. 함승연(2009). 공대 졸업생들의 공학기초능력 수준과 교육요구 분석. 대한공업교육학회지, 34(1):380-410.
  25. Anderson, C. W., & Smith, E. L. (1987). Teaching science. In V. Richardson-Koehler(Eds.), Educators' handbook: A research perspective(pp. 84-111). New York: Longman.
  26. Borich, G. D. (2010). Effective teaching methods: Researchbased practice(Eds.). Upper Saddle River, NJ: Prentice Hall.
  27. Cornett, J. W. (1990). Teacher thinking about curriculum and instruction: A case study of a secondary social studies teacher. Theory & Research in Social Education, 18(3):248-273. https://doi.org/10.1080/00933104.1990.10505617
  28. Cunningham, J. W., & Fitzgerald, J. (1996). Epistemology and reading. Reading Research Quarterly, 31(1):36-60. https://doi.org/10.1598/RRQ.31.1.3
  29. De Vries, M. (2005). Teaching about technology: An introduction to the philosophy of technology for nonphilosophers. Springer Science & Business Media.
  30. Friedrichsen, P. M., & Dana, T. M. (2005). Substantivelevel theory of highly regarded secondary biology teachers' science teaching orientations. Journal of Research in Science Teaching, 42(2):218-244. https://doi.org/10.1002/tea.20046
  31. Friedrichsen, P., Driel, J. H. V., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95(2):358-376. https://doi.org/10.1002/sce.20428
  32. Gardner, P. L. (1992). The application of science to technology. Research in Science Education, 22(1):140-148. https://doi.org/10.1007/BF02356889
  33. Goodman, J. (1988). Constructing a practical philosophy of teaching: A study of preservice teachers' professional perspectives. Teaching and Teacher Education, 4(2):121-137. https://doi.org/10.1016/0742-051X(88)90013-3
  34. Griffin, G. A., & Hukill, H. (1983). First years of teaching:What are the pertinent issues?. Austin: University of Texas, R & D Center for Teacher Education.
  35. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. Teachers College Press, Columbia University.
  36. Hoegl, M., & Gemuenden, H. G. (2001). Teamwork quality and the success of innovative projects: A theoretical concept and empirical evidence. Organization Science, 12(4):435-449. https://doi.org/10.1287/orsc.12.4.435.10635
  37. Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1):88-140. https://doi.org/10.3102/00346543067001088
  38. Holvikivi, J. (2007). Logical reasoning ability in engineering students: A case study. IEEE Transactions on Education, 50(4):367-372. https://doi.org/10.1109/TE.2007.906600
  39. Jablin, F. M., & Sias, P. M. (2001). Communication competence. In F. M. Jablin & L. L. Putnam(Eds.), The new handbook of organizational communication: Advances in theory, research and methods(pp. 819-864). Thousand Oaks, CA: Sage.
  40. Kagan, D. M. (1992). Implication of research on teacher belief. Educational psychologist, 27(1):65-90. https://doi.org/10.1207/s15326985ep2701_6
  41. Kember, D., & Gow, L. (1994). Orientations to teaching and their effect on the quality of student learning. Journal of Higher Education, 65 : 58-74. https://doi.org/10.2307/2943877
  42. Kroes, P. (2012). Technical artefacts: Creations of mind and matter: A philosophy of engineering design. Netherlands: Springer Science & Business Media.
  43. Layton, D. (1993). Technology's challenge to science education. Philadelphia, PA: Open University Press.
  44. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.
  45. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman(Eds.), Examining pedagogical content knowledge(pp. 95-132). Netherlands: Springer.
  46. Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3):307-332. https://doi.org/10.3102/00346543062003307
  47. Patrick, H., & Pintrich, P. R. (2001). Conceptual change in teachers' intuitive conceptions of learning, motivation, and instruction: The role of motivational and epistemological beliefs. In B. Torff & R. J. Sternberg (Eds.), Understanding and teaching the intuitive mind:Student and teacher learning(pp. 117-143). Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.
  48. Petroski, H. (2005). Pushing the limits: New adventures in engineering. (이은선 역). 기술의 한계를 넘어. 서울: 생각의 나무. (원서출판 2004)
  49. Porter, A. C., & Freeman, D. J. (1986). Professional orientations: An essential domain for teacher testing. Journal of Negro Education, 55(3):284-292. https://doi.org/10.2307/2295099
  50. Rugarcia, A. et al. (2000). The future of engineering education I. A vision for a new century. Chemical Engineering Education, 34(1):16-25.
  51. Schraw, G. (2001). Current themes and future directions in epistemological research: A commentary. Educational Psychology Review, 13(4):451-464. https://doi.org/10.1023/A:1011922015665
  52. Southerland, S. A., Sinatra, G. M., & Matthews, M. R. (2001). Belief, knowledge, and science education. Educational Psychology Review, 13(4):325-351. https://doi.org/10.1023/A:1011913813847
  53. Thompson, A. G. (1984). The relationship of teachers' conceptions of mathematics and mathematics teaching to instructional practice. Educational Studies in Mathematics, 15(2):105-127. https://doi.org/10.1007/BF00305892
  54. Tsur, C. (2000). Prospective science teachers' knowledge of inquiry-based instruction in a secondary methods course. Unpublished doctoral dissertation, Pennsylvania State University.
  55. White, C. S. (1982). A validation study of the Barth-Shermis social studies preference scale. Theory & Research in Social Education, 10(2):1-20. https://doi.org/10.1080/00933104.1982.10505421
  56. 한겨레, http://www.hani.co.kr/arti/opinion/column/652188.html
  57. 한국과학커뮤니케이터협회, http://kasc.webmir.co.kr/information/webzin.php?board_code=board_view&board_idx=67&page=19&start_page=1&Category=&order_type=RegDate&align=desc&sF=&sT=&date_idx=10&mode=shop_board_webzine