DOI QR코드

DOI QR Code

Antifilarial and Antibiotic Activities of Methanolic Extracts of Melaleuca cajuputi Flowers

  • Al-Abd, Nazeh M. (Department of Parasitology, Faculty of Medicine, University of Malaya) ;
  • Nor, Zurainee Mohamed (Department of Parasitology, Faculty of Medicine, University of Malaya) ;
  • Mansor, Marzida (Department of Anesthesiology, Faculty of Medicine, University of Malaya) ;
  • Hasan, MS (Department of Anesthesiology, Faculty of Medicine, University of Malaya) ;
  • Kassim, Mustafa (Department of Anesthesiology, Faculty of Medicine, University of Malaya)
  • Received : 2015.07.24
  • Accepted : 2015.12.15
  • Published : 2016.06.30

Abstract

We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.

Keywords

References

  1. Michael E, Bundy DA, Grenfell BT. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 1996; 112: 409-428. https://doi.org/10.1017/S0031182000066646
  2. Michael E, Bundy DA. Global mapping of lymphatic filariasis. Parasitol Today 1997; 13: 472-476. https://doi.org/10.1016/S0169-4758(97)01151-4
  3. Al-Abd NM, Nor ZM, Al-Adhroey AH, Suhaimi A, Sivanandam S. Recent advances on the use of biochemical extracts as filaricidal agents. Evid Based Complementary Alternat Med 2013; 2013: 986573.
  4. Al-Abd NM, Nor Z, Ahmed A, Al-Adhroey AH, Mansor M, Kassim M. Lymphatic filariasis in Peninsular Malaysia: a cross-sectional survey of the knowledge, attitudes, and practices of residents. Parasit Vectors 2014; 7: 545. https://doi.org/10.1186/s13071-014-0545-z
  5. Saini P, Gayen P, Nayak A, Kumar D, Mukherjee N, Pal BC, Sinha Babu SP. Effect of ferulic acid from Hibiscus mutabilis on filarial parasite Setaria cervi: molecular and biochemical approaches. Parasitol Int 2012; 61: 520-531. https://doi.org/10.1016/j.parint.2012.04.002
  6. Kumari AK, Juvaraj J, Das LK. Issues in delivering morbidity management for lymphatic filariasis elimination: a study in Pondicherry, South India. ScientificWorldJournal 2012; 2012: 372618.
  7. Taylor MJ, Ford L, Hoerauf A, Pfarr K, Foster JM, Kumar S, Slatko BE. Drugs and targets to perturb the symbiosis of Wolbachia and filarial nematodes. In Caffrey CR ed, Parasitic Helminths: Targets, Screens, Drugs and Vaccines. New Jersey, USA. John Wiley & Sons. 2012, pp 251-265.
  8. Fernando SD, Rodrigo C, Rajapakse S. Current evidence on the use of antifilarial agents in the management of bancroftian filariasis. J Trop Med 2011; 2011: 175941.
  9. Wolter F, Clausnitzer A, Akoglu B, Stein J. Piceatannol, a natural analog of resveratrol, inhibits progression through the S phase of the cell cycle in colorectal cancer cell lines. J Nutr 2002; 132: 298-302. https://doi.org/10.1093/jn/132.2.298
  10. Kassim M, Yusoff KM, Ong G, Sekaran S, Yusof MY, Mansor M. Gelam honey inhibits lipopolysaccharide-induced endotoxemia in rats through the induction of heme oxygenase-1 and the inhibition of cytokines, nitric oxide, and high-mobility group protein B1. Fitoterapia 2012; 83: 1054-1059. https://doi.org/10.1016/j.fitote.2012.05.008
  11. Funatogawa K, Hayashi S, Shimomura H, Yoshida T, Hatano T, Ito H, Hirai Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol Immunol 2004; 48: 251-261. https://doi.org/10.1111/j.1348-0421.2004.tb03521.x
  12. Liu J. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 1995; 49: 57-68. https://doi.org/10.1016/0378-8741(95)90032-2
  13. Doran JC. Cajuput Oil. In Southwell I, Lowe R eds, Tea Tree The Genus Melaleuca. Amsterdam, The Netherlands. Halwood Academic Pulishers. 1999, pp 221-235.
  14. Hoerauf A, Nissen-Pahle K, Schmetz C, Henkle-Duhrsen K, Blaxter ML, Buttner DW, Gallin MY, Al-Qaoud KM, Lucius R, Fleischer B. Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 1999; 103: 11-18. https://doi.org/10.1172/JCI4768
  15. Hoerauf A, Volkmann L, Hamelmann C, Adjei O, Autenrieth IB, Fleischer B, Buttner DW. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 2000; 355: 1242-1243. https://doi.org/10.1016/S0140-6736(00)02095-X
  16. Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y, Unnasch TR, Lustigman S. Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Negl Trop Dis 2009; 3: e525. https://doi.org/10.1371/journal.pntd.0000525
  17. Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 1999; 29: 357-64. https://doi.org/10.1016/S0020-7519(98)00200-8
  18. O'Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 1992; 89: 2699-2702. https://doi.org/10.1073/pnas.89.7.2699
  19. Zhou W, Rousset F, O'Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 1998; 265: 509-515. https://doi.org/10.1098/rspb.1998.0324
  20. Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 2006; 72: 7098-7110. https://doi.org/10.1128/AEM.00731-06
  21. Gunawardena NK, Fujimaki Y, Aoki Y, Mishima N, Ezaki T, Uni S, Kimura E. Differential effects of diethylcarbamazine, tetracycline and the combination on Brugia pahangi adult females in vitro. Parasitol Int 2005; 54: 253-259. https://doi.org/10.1016/j.parint.2005.06.005
  22. Rao R, Well GJ. In vitro effects of antibiotics on Brugia malayi worm survival and reproduction. J Parasitol 2002; 88: 605-611. https://doi.org/10.1645/0022-3395(2002)088[0605:IVEOAO]2.0.CO;2
  23. Khunkitti W, Fujimaki Y, Aoki Y. In vitro antifilarial activity of extracts of the medicinal plant Cardiospermum halicacabum against Brugia pahangi. J Helminthol 2000; 74: 241-246. https://doi.org/10.1017/S0022149X00000342
  24. Mishra V, Parveen N, Singhal KC, Khan NU. Antifilarial activity of Azadirachta indica on cattle filarial parasite Setaria cervi. Fitoterapia 2005; 76: 54-61. https://doi.org/10.1016/j.fitote.2004.10.010
  25. Sahare KN, Singh V. Antifilarial activity of ethyl acetate extract of Vitex negundo leaves in vitro. Asian Pac J Trop Med 2013; 6: 689-692. https://doi.org/10.1016/S1995-7645(13)60119-4
  26. Zaridah MZ, Idid SZ, Omar AW, Khozirah S. In vitro antifilarial effects of three plant species against adult worms of subperiodic Brugia malayi. J Ethnopharmacol 2001; 78: 79-84. https://doi.org/10.1016/S0378-8741(01)00286-0
  27. Fujimaki Y, Kamachi T, Yanagi T, Caceres A, Maki J, Aoki Y. Macrofilaricidal and microfilaricidal effects of Neurolaena lobata, a Guatemalan medicinal plant, on Brugia pahangi. J Helminthol 2005; 79: 23-28. https://doi.org/10.1079/JOH2004262
  28. Sashidhara KV, Singh SP, Misra S, Gupta J, Misra-Bhattacharya S. Galactolipids from Bauhinia racemosa as a new class of antifilarial agents against human lymphatic filarial parasite, Brugia malayi. Eur J Med Chem 2012; 50: 230-235. https://doi.org/10.1016/j.ejmech.2012.01.057
  29. Smith HL, Rajan TV. Tetracycline inhibits development of the infective-stage larvae of filarial nematodes in vitro. Exp Parasitol 2000; 95: 265-270. https://doi.org/10.1006/expr.2000.4525
  30. Zhang X, Luckhart S, Tu Z, Pfeiffer DG. Analysis of Wolbachia strains associated with Conotrachelus nenuphar (Coleoptera: Curculionidae) in the Eastern United States. Environ Entomol 2010; 39: 396-405. https://doi.org/10.1603/EN09276
  31. Rao RU, Moussa H, Weil GJ. Brugia malayi: effects of antibacterial agents on larval viability and development in vitro. Exp Parasitol 2002; 101: 77-81. https://doi.org/10.1016/S0014-4894(02)00019-X
  32. Langworthy NG, Renz A, Mackenstedt U, Henkle-Duhrsen K, de Bronsvoort MB, Tanya VN, Donnelly MJ, Trees AJ. Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc Biol Sci 2000; 267: 1063-1069. https://doi.org/10.1098/rspb.2000.1110
  33. Stolk WA, de Vlas SJ, Habbema JD. Anti-Wolbachia treatment for lymphatic filariasis. Lancet 2005; 365: 2067-2068. https://doi.org/10.1016/S0140-6736(05)66714-1

Cited by

  1. Two decades of antifilarial drug discovery: a review vol.7, pp.33, 2016, https://doi.org/10.1039/c7ra01857f