DOI QR코드

DOI QR Code

Finding Wolbachia in Filarial larvae and Culicidae Mosquitoes in Upper Egypt Governorate

  • Dyab, Ahmed K. (Department of Parasitology, Faculty of Medicine, Assiut University) ;
  • Galal, Lamia A. (Department of Parasitology, Faculty of Medicine, Assiut University) ;
  • Mahmoud, Abeer E. (Department of Parasitology, Faculty of Medicine, Assiut University) ;
  • Mokhtar, Yasser (Department of Parasitology, Faculty of Medicine, Assiut University)
  • Received : 2016.01.06
  • Accepted : 2016.05.07
  • Published : 2016.06.30

Abstract

Wolbachia is an obligatory intracellular endosymbiotic bacterium, present in over 20% of all insects altering insect reproductive capabilities and in a wide range of filarial worms which is essential for worm survival and reproduction. In Egypt, no available data were found about Wolbachia searching for it in either mosquitoes or filarial worms. Thus, we aimed to identify the possible concurrent presence of Wolbachia within different mosquitoes and filarial parasites, in Assiut Governorate, Egypt using multiplex PCR. Initially, 6 pools were detected positive for Wolbachia by single PCR. The simultaneous detection of Wolbachia and filarial parasites (Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens) by multiplex PCR was spotted in 5 out of 6 pools, with an overall estimated rate of infection (ERI) of 0.24%. Unexpectedly, the highest ERI (0.53%) was for Anopheles pharoensis with related Wolbachia and W. bancrofti, followed by Aedes (0.42%) and Culex (0.26%). We also observed that Wolbachia altered Culex spp. as a primary vector for W. bancrofti to be replaced by Anopheles sp. Wolbachia within filaria-infected mosquitoes in our locality gives a hope to use bacteria as a new control trend simultaneously targeting the vector and filarial parasites.

Keywords

References

  1. Hertig M, Wolbach SB. Studies on rickettsia-like microorganisms in insects. J Med Res 1924; 44: 329-374.
  2. Iturbe-Ormaetxe I, Walker T, O'Neill SL. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 2011; 12: 508-518. https://doi.org/10.1038/embor.2011.84
  3. Werren JH, Windsor D, Guo LR. Distribution of Wolbachia among neotropical arthropods. Proc Biol Sci 1995; 262: 197-204. https://doi.org/10.1098/rspb.1995.0196
  4. Kittayapong P, Baisley KJ, Baimai V, O'Neill SL. Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 2000; 37: 340-345. https://doi.org/10.1093/jmedent/37.3.340
  5. Ricci I, Cancrini G, Gabrielli S, D'Amelio S, Favia G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol 2002; 39: 562-567. https://doi.org/10.1603/0022-2585-39.4.562
  6. Rasgon JL, Scott TW. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infection in selected California mosquitoes (Diptera: Culicidae). J Med Entomol 2004; 41: 255-257. https://doi.org/10.1603/0022-2585-41.2.255
  7. Ravikumar H, Ramachandraswamy N, Sampathkumar S, Prakash BM, Huchesh HC, Uday J, Puttaraju HP. A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae). Trop Biomed 2010; 27: 384-393.
  8. Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JRL. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 2014; 132 (suppl): S150-S163. https://doi.org/10.1016/j.actatropica.2013.11.004
  9. Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 1999; 53: 71-102. https://doi.org/10.1146/annurev.micro.53.1.71
  10. Turelli M, Hoffmann AA. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol 1999; 8: 243-255. https://doi.org/10.1046/j.1365-2583.1999.820243.x
  11. Pettigrew MM, O'Neill SL. Control of vector-borne disease by genetic manipulation of insect vectors: technological requirements and research priorities. Austral J Entomol 1997; 36: 309-317. https://doi.org/10.1111/j.1440-6055.1997.tb01477.x
  12. Rasgon JL, Scott TW. Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 2003; 165: 2029-2038.
  13. Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A 2012; 109: 255-260. https://doi.org/10.1073/pnas.1112021108
  14. Russell JA, Goldman-Huertas B, Moreau CS, Baldo L, Stahlhut JK, Werren JH, Pierce NE. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 2009; 63: 624-640. https://doi.org/10.1111/j.1558-5646.2008.00579.x
  15. Bandi C, Anderson TJ, Genchi C, Blaxter ML. Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 1998; 265: 2407-2413. https://doi.org/10.1098/rspb.1998.0591
  16. Taylor MJ, Bilo K, Cross HF, Archer JP, Underwood AP. 16S rDNA phylogeny and ultrastructural characterization of Wolbachia intracellular bacteria of the filarial nematodes Brugia malayi, B. pahangi, and Wuchereria bancrofti. Exp Parasitol 1999; 91: 356-361. https://doi.org/10.1006/expr.1998.4383
  17. Grandi G, Morchon R, Kramer L, Kartashev V, Simon F. Wolbachia in Dirofilaria repens, an agent causing human subcutaneous dirofilariasis. J Parasitol 2008; 94: 1421-1423. https://doi.org/10.1645/GE-1575.1
  18. Slatko BE, Luck AN, Dobson SL, Foster JM. Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 2014; 195: 88-95 https://doi.org/10.1016/j.molbiopara.2014.07.004
  19. Taylor MJ. Wolbachia in the inflammatory pathogenesis of human filariasis. Ann N Y Acad Sci 2003; 990: 444-449. https://doi.org/10.1111/j.1749-6632.2003.tb07409.x
  20. Osei-Poku J, Han C, Mbogo CM, Jiggins FM. Identification of Wolbachia strains in mosquito disease vectors. PLoS One 2012; 7: e49922. https://doi.org/10.1371/journal.pone.0049922
  21. WHO Progress report 2000-2009 and strategic plan 2010-2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. Geneva, Switzerland. WHO. 2010 (http://whqlibdoc.who.int/publications/2010/9789241500722_eng.pdf).
  22. Latrofa MS, Montarsi F, Ciocchetta S, Annoscia G, Dantas-Torres F, Ravagnan S, Capelli G, Otranto D. Molecular xenomonitoring of Dirofilaria immitis and Dirofilaria repens in mosquitoes from north-eastern Italy by real-time PCR coupled with melting curve analysis. Parasit Vectors 2012; 5: 76-83. https://doi.org/10.1186/1756-3305-5-76
  23. Townson S, Tagboto S, McGarry HF, Egerton GL, Taylor MJ. Onchocerca parasites and Wolbachia endosymbionts: evaluation of a spectrum of antibiotic types for activity against Onchocerca gutturosa in vitro. Filaria J 2006; 5: 1-9. https://doi.org/10.1186/1475-2883-5-1
  24. Landum M, Ferreira CC, Calado M, Alho AM, Mauricio IL, Meireles JS, de Carvalho LM, Cunha C, Belo S. Detection of Wolbachia in Dirofilaria infected dogs in Portugal. Vet Parasitol 2014; 204: 407-410. https://doi.org/10.1016/j.vetpar.2014.05.027
  25. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 2012; 78: 4740-4743. https://doi.org/10.1128/AEM.00069-12
  26. Taylor MJ, Hoerauf A, Townson S, Slatko BE, Ward SA. Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 2014; 141: 119-127. https://doi.org/10.1017/S0031182013001108
  27. Silver JB. Mosquito ecology: field sampling methods. 3rd ed. New York, USA. Springer. 2008.
  28. Russell PF, Rozeboom LE, Stone A. Keys to the Anopheline mosquitoes of the world with notes on their identification, distribution, biology, and relation to Malaria. American Entomological Society. 1943, p 1-152.
  29. Natvig LR. Contributions to knowledge of the Danish and Fennoscandian mosquitoes-Culicini. Suppl Norsk Entomologisk Tidsskrift. 1948, p 567.
  30. Gad AM. Mosquitoes of oasis of the Libyan Desert of Egypt. Bull Soc Entomol Egypt 1963; 40: 131-136.
  31. Werren JH, Windsor DM. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci 2000; 267: 1277-1285. https://doi.org/10.1098/rspb.2000.1139
  32. Siridewa K, Karunanayake EH, Chandrasekharan NV. Polymerase chain reaction-based technique for the detection of Wuchereria bancrofti in human blood samples, hydrocele fluid and mosquito vectors. Am J Trop Med Hyg 1996; 54: 72-76. https://doi.org/10.4269/ajtmh.1996.54.72
  33. Rishniw M, Barr SC, Simpson KW, Frongillo MF, Franz M, Alpizar JL. Discrimination between six species of canine microfilariae by a single polymerase chain reaction. Vet Parasitol 2006; 135: 303-314. https://doi.org/10.1016/j.vetpar.2005.10.013
  34. Cowling DW, Gardner IA, Johnson WO. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med 1999; 39: 211-225. https://doi.org/10.1016/S0167-5877(98)00131-7
  35. Kassem HA, Hassan AN, Abdel-Hamid I, Osman G, El Khalab EM, Madkour MA. Wolbachia infection and the expression of cytoplasmic incompatibility in sandflies (Diptera: Psychodidae) from Egypt. Ann Trop Med Parasitol 2003; 97: 639-644. https://doi.org/10.1179/000349803225001391
  36. Rao RU, Atkinson LJ, Ramzy RM, Helmy H, Farid HA, Bockarie MJ, Susapu M, Laney SJ, Williams SA, Weil GJ. A real-time PCR-based assay for detection of Wuchereria bancrofti and in blood and mosquitoes. Am J Trop Med Hyg 2006; 74: 826-832.
  37. Mokhtar Y. Parasitological Studies on Mosquitoes as Vectors for Parasitic Diseases with Special Reference to Filariae in Assiut Governorate. M.D. Thesis, Parasitology Department, Faculty of Medicine, Assiut University, Assiut, Egypt. 2014.
  38. Khalil GM. A preliminary survey of mosquitoes in Upper Egypt. J Egypt Public Health Assoc 1981; 55: 355-359.
  39. El-Nazer MM. Parasitological and immunological studies on filarial worms in Assiut Governorate. Ph.D. thesis, Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt. 1990.
  40. Duron O, Lagnel J, Raymond M, Bourtzis K, Fort P, Weill M. Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection, and recombination. Mol Ecol 2005; 14: 1561-1573. https://doi.org/10.1111/j.1365-294X.2005.02495.x
  41. Duron O, Raymond M, Weill M. Many compatible Wolbachia strains coexist within natural populations of Culex pipiens mosquito. Heredity 2011; 106: 986-993. https://doi.org/10.1038/hdy.2010.146
  42. Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 2003; 40: 36-51. https://doi.org/10.1603/0022-2585-40.1.36
  43. Rasgon JL, Cornel AJ, Scott TW. Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Proc Biol Sci 2006; 273: 1603-1611. https://doi.org/10.1098/rspb.2006.3493
  44. Harb M, Faris R, Gad AM, Hafez ON, Ramzy RM, Buck AA. The resurgence of lymphatic filariasis in the Nile Delta. Bull WHO 1993; 71: 49-54.
  45. Farid H, Hammad RE, Kamal SA, Christensen BM. Selection of a strain of Culex pipiens highly susceptible to Wuchereria bancrofti. Egypt J Biol 2000; 2: 125-131.
  46. Manguin S, Bangs MJ, Pothikasikorn J, Chareonviriyaphap T. Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infect Genet Evol 2010; 10: 159-177. https://doi.org/10.1016/j.meegid.2009.11.014
  47. Dyab AK, Galal LA, Mahmoud AE, Mokhtar Y. Xenomonitoring of different filarial nematodes using single and multiplex PCR in mosquitoes from Assiut Governorate, Egypt. Korean J Parasitol 2015; 53: 77-83. https://doi.org/10.3347/kjp.2015.53.1.77
  48. Xi Z, Dean JL, Khoo C, Dobson SL. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol 2005; 35: 903-910. https://doi.org/10.1016/j.ibmb.2005.03.015
  49. Xi Z, Khoo CCH, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005; 310: 326-328. https://doi.org/10.1126/science.1117607
  50. McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009; 323: 141-144. https://doi.org/10.1126/science.1165326
  51. Ramzy RM. Field application of PCR-based assays for monitoring Wuchereria bancrofti infection in Africa. Ann Trop Med Parasitol 2002; 96(suppl 2): S55-S59. https://doi.org/10.1179/000349802125002383
  52. Bandi C, Trees AJ, Brattig NW. Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 2001; 98: 215-238. https://doi.org/10.1016/S0304-4017(01)00432-0
  53. Pourali P, Roayaei Ardakani M, Jolodar A, Razi Jalali MH. PCR screening of the Wolbachia in some arthropods and nematodes in Khuzestan province. Iran J Vet Res (Shiraz University) 2009; 10(3 ser. no. 28): 216-222.
  54. Simon F, Siles-Lucas M, Morchon R, Gonzalez-Miguel J, Mella I, Carreton E, Montoya-Alonso JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 2012; 25: 507-544. https://doi.org/10.1128/CMR.00012-12

Cited by

  1. Dirofilaria and Wolbachia in mosquitoes (Diptera: Culicidae) in central European Russia and on the Black Sea coast vol.26, pp.None, 2016, https://doi.org/10.1051/parasite/2019002
  2. Wolbachia infection in West Nile Virus vectors of northwest Iran vol.55, pp.1, 2016, https://doi.org/10.1007/s13355-019-00658-6