DOI QR코드

DOI QR Code

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Received : 2015.08.18
  • Accepted : 2016.01.19
  • Published : 2016.06.23

Abstract

Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.

Keywords

References

  1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math., 395(1989), 132-141.
  2. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
  3. J. T. Cho and U-H. Ki, Real hypersurfaces in complex projective spaces in terms of Jacobi operators, Acta Math. Hungar., 80(1998), 155-167. https://doi.org/10.1023/A:1006585128386
  4. J. T. Cho and U-H. Ki, Real hypersurfaces in complex space form with Reeb flow symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371. https://doi.org/10.4153/CMB-2008-036-7
  5. U-H. Ki, I. -B. Kim and D. H. Lim, Characterizations of real hypersurfaces of type A in a complex space form, Bull. Korean Math. Soc., 47(2010), 1-15.
  6. U-H. Ki and H. Kurihara, Real hypersurfaces and ${\xi}$-parallel structure Jacobi operators in complex space forms, J. Korean Academy Sciences, Sciences Series, 48(2009), 53-78.
  7. U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J., 32(2009), 5-23.
  8. U-H. Ki, H. Kurihara and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math., 33(2009), 39-56. https://doi.org/10.21099/tkbjm/1251833206
  9. U-H. Ki, S. Nagai and R. Takagi, The structure vector field and structure Jacobi operator of real hypersurfaces in non at complex space forms, Geom. Dedicata, 149(2010), 161-176. https://doi.org/10.1007/s10711-010-9474-y
  10. U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math J. Okayama Univ., 32(1990), 207-221.
  11. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
  12. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperblic space, Geom Dedicata, 20(1986), 245-261. https://doi.org/10.1007/BF00164402
  13. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364. https://doi.org/10.1090/S0002-9947-1975-0377787-X
  14. M. Ortega, J. D. Perez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math., 36(2006), 1603-1613. https://doi.org/10.1216/rmjm/1181069385
  15. J. D. Perez, F. G. Santos and Y. J. Suh Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc., 13(2006), 459-469.
  16. J. D. Perez, F. G. Santos and Y. J. Suh Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator, Houston J. Math., 33(2007), 1005-1009.
  17. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.
  18. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc., 15(1975), 43-53, 507-516.

Cited by

  1. Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form vol.56, pp.4, 2016, https://doi.org/10.5666/KMJ.2016.56.4.1207