DOI QR코드

DOI QR Code

Hydrolysable Tannins from Cercidiphyllum japonicum Bark

  • Lee, Min-Sung (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University) ;
  • Min, Hee-Jeong (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University) ;
  • Si, Chuan-Ling (Tianjin Key Lab of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University)
  • Received : 2016.06.01
  • Accepted : 2016.07.07
  • Published : 2016.07.25

Abstract

The EtOAc and $H_2O$ soluble fractions of Katsura tree (Cercidiphyllum japonicum Sieb. Et Zucc) bark extracts were chromatographed on a Sephadex LH-20 column with various aqueous MeOH. Gallic acid (1), methyl galate (2), kurigalin (3), 1,2,3,6-tetra-O-galloyl-${\beta}$-D-glucose (4) and 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (5) were isolated from EtOAc fraction. Isocorilagin (6) and methyl galate (2) were separated from $H_2O$ fraction. The structure determination was done by $^1H$ and $^{13}C$ NMR. Of these isolated compounds, methyl galate (2), kurigalin (3) and isocorilagin (6) were isolated, for the first time, from the bark extracts of Cercidiphyllum japonicum.

Keywords

References

  1. Anderson, O.M., Markham, K.R. 2006. Flavonoids: Chemistry, Biochemistry and Applications. Taylor & Francis, New York.
  2. Cammann, J., Denzel, K., Schilling, G., Gross, G.G. 1989. Biosynthesis of gallotannins: ${\beta}$-Glucogallindependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,4-tetragalloylglucose. Archives of Biochemistry and Biophysics 273: 58-63. https://doi.org/10.1016/0003-9861(89)90161-6
  3. Chung, S.K., Nam, J.A., Jeon, S.Y., Kim, S.I., Lee, H.J., Chung, T.H., Song, K.S. 2003. A prolyl endopeptidase-inhibiting antioxidant from Phyllanthus ussurensis. Archives of Pharmacal Research 26(12): 1024-1028. https://doi.org/10.1007/BF02994753
  4. Duan, D., Li, Z., Luo, H., Zhang, W., Chen, L., Xu, X. 2004. Antiviral compounds from traditional Chinese medicines Galla Chinese as inhibitors of HCV NS3 protease. Bioorg Med Chem Lett 14: 6041-6044. https://doi.org/10.1016/j.bmcl.2004.09.067
  5. Isagi, Y., Kudo, M., Osumi, K., Sato, K., Sakio, H. 2005. Polymorphic microsatellite and markers for a relictual angiosperm Cercidiphyllum japonicum Sieb. et Zucc. and their utility for Cercidiphyllum magnificum. Mol. Ecol. Notes 5: 596-598. https://doi.org/10.1111/j.1471-8286.2005.01006.x
  6. Kador, P.F., Robison, W.G., Kinoshita, J.H. 1985a. The pharmacology of aldose reductase inhibitors. Annu. Rev. Pharmacol. Toxicol. 25: 691-714. https://doi.org/10.1146/annurev.pa.25.040185.003355
  7. Kador, P.J., Konishita, J.H., Sharpless, N.E. 1985b. Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications. J. Med. Chem. 28: 841-849. https://doi.org/10.1021/jm00145a001
  8. Kashiwada, Y., Nonaka, G., Nishioka, I. 1988. Galloylsucroses from Rhubarbs. Phytochemistry 27: 1469-1472. https://doi.org/10.1016/0031-9422(88)80217-6
  9. Kwon, D.J. 2010. Chemical constituents and biological activities of certain Acer Species growing in Korea. Ph.D. Dissertation, 211-221.
  10. Kwon, D.J., Bae, Y.S. 2009. Ellagitannins from bark of Juglans mandshurica. Mokchae Konghak. 37(5): 480-485.
  11. Lampire, O., Mila, I., Raminosoa, M., Michon, V., Herve, C., Penhoat, D., Faucheur, N., Laprevote, O., Scalbert, A. 1998. Polyphenols isolated from the bark of Castanea sativa Mill. Chemical structures and auto-association. Phytochemistry 49: 623-631. https://doi.org/10.1016/S0031-9422(98)00114-9
  12. Latte, K.P., Kolodziej, H. 2000. Pelargoniins, new ellagitannins from Pelargonium reniforme. Phytochemistry 54(7): 701-708. https://doi.org/10.1016/S0031-9422(00)00176-X
  13. Lee, H.Y., Jeong, H.S. 2005. Isolation and identification of antimicrobial substance from Canavalia gladiata. Food Science and Biotechnology 14(2): 268-274.
  14. Lee, T.S., Bae, Y.S. 2015. A Gallotannin from Cercidiphyllum japonicum Leaves. J. Korean Wood Sci. Technol. 43(5): 558-565. https://doi.org/10.5658/WOOD.2015.43.5.558
  15. Liu, X., Cui, C., Zhao, M., Wang, J., Luo, W., Yang, B., Jiang, Y. 2008. Identification of phenolics in the fruit of emblica and their antioxidant activities. Food Chemistry 109(4): 909-915. https://doi.org/10.1016/j.foodchem.2008.01.071
  16. Luo, W., Zhao, M., Yang, B., Shen, G., Rao, G. 2009. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food chemistry 114(2): 499-504. https://doi.org/10.1016/j.foodchem.2008.09.077
  17. Manchester, S.R., Chen, Z.D., Lu, A.M., Uemura, K. 2009. Eastern asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. J. Syst. Evol. 47: 1-42. https://doi.org/10.1111/j.1759-6831.2009.00001.x
  18. Niehaus, J.U., Gross, G.G. 1997. A gallotannin degrading esterase from laves of Pedunculate oak. Phytochemistry 45(8): 1555-1560. https://doi.org/10.1016/S0031-9422(97)00261-6
  19. Niemetz, R., Gross, G.G. 2001. Gallotannin biosynthesis: ${\beta}$-glucogallin: hexagalloyl 3-O-galloyltransferase from Rhus typhina leaves. Phytochemistry 58: 657-661. https://doi.org/10.1016/S0031-9422(01)00300-4
  20. Nonaka, G., Ishimatsu, M., Ageta, M., Nishioka I. 1989. Tannins and related compounds. LXXVI. Isolation and Characterization of Cercidinins A and B and Cuspinin, Unusual 2,3-(R)-Hexahydroxydiphenoyl Glucoses from Cercidiphyllum japonicum and Castanopsis Cspidata var. sieboldii. Chem. Pharm. Bull. 37(1): 50-53. https://doi.org/10.1248/cpb.37.50
  21. Ozawa, T., Kobayashi, S., Seki, R., Imagawa, H. 1984. A new gallotannin from bark of chestnut tree, Castanea crenata Sieb. et Zucc. Agric Biol Chem 48: 1411-1416. https://doi.org/10.1080/00021369.1984.10866332
  22. Owen, R.W., Haubner, R., Hull, W.E., Erben, G., Spiegelhalder, B., Bartsch, H., Haber, B. 2003. Isolation and structure elucidantion of the major individual polyphenols in carob fibre. Food and Chemical Toxicology 41: 1727-1738. https://doi.org/10.1016/S0278-6915(03)00200-X
  23. Saijo, R., Nonaka, G.I., Nishioka, I. 1990. Gallica acid esters of bergenin and norbergenin from Mallotus Japonicus. Phytochemistry 29: 267-270. https://doi.org/10.1016/0031-9422(90)89047-D
  24. Sancheti, S., Sancheti, S., Bafna, M., Seo, S.Y. 2011. 2,4,6-Trihydroxybenzaldehyde as a potent antidiabetic agent alleviates postprandial hyperglycemia in normal and diabetic rats. Medicinal Chemistry Research. 20: 1181-1187. https://doi.org/10.1007/s00044-010-9461-8
  25. Sepulveda, L., Ascacio, A., Raul, R.H., Antonio, A.C., Cristobal, N.A. 2011. Ellagic acid: Biological properties and Biotechnological development for production processes. African Journal of Biotechnology. 10(20): 4518-4523.
  26. Steinmetz, W.E. 2010 NMR assignment and characterization of proton exchange of the ellagitannin granatin B. Magnetic Resonance in Chemistry. 48: 565-570. https://doi.org/10.1002/mrc.2615
  27. Tada, M., Sakurai, K. 1991. Antimicrobial compound from Cercidiphyllum japonicum. Phytochemistry 30(4): 1119-1120. https://doi.org/10.1016/S0031-9422(00)95184-7
  28. Takasugi, M., Katui, N. 1986. A biphenyl phytoalexin from Cercidiphyllum japonicum. Phytochemistry 25(12): 2751-2752. https://doi.org/10.1016/S0031-9422(00)83734-6
  29. Tanaka, T., Nonaka, G., Nishioka, I. 1985. Punicafolin, an ellagitannin from the leaves of Punica grantum. Phytochemistry 24: 2075-2078. https://doi.org/10.1016/S0031-9422(00)83125-8
  30. Towatari, K., Yoshida, K., Mori, N., Shimizu, K.,Kondo, R., Sakai, K. 2002. Polyphenols from the heartwood of Cercidiphyllum japonicum and their effects on prolifefation of mouse hair epithelial cells. Planta Medica 68: 995-998. https://doi.org/10.1055/s-2002-35657
  31. Wang, D., Kasuga, J., Kuwabara, C., Endoh, K., Fukushi, Y., Fujikawa, S., Arakawa, K. 2012. Presence of supercooling-facilitating hydrolyzable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum. Planta 235: 747-759. https://doi.org/10.1007/s00425-011-1536-3
  32. Williamson, J., Kilo, C., Tilton, R.G. 1992. Mechanism of glucose and diabetes-induced vascular dysfunction. In N. Ruderman, J. Brownlee and J. Williamson (eds.), hyperglycemia, diabetes, and vascular disease. American physiology society. New York, pp. 107-132.
  33. Yoshida, T., Hatano, T., Ito, H., Okuda, T., Quideau, S. 2009. Structural diversity and an timicrobial activities of ellagitannins. Chemistry and Biology of Ellagitannins. 55-93, World Scientific Publishing, Singapore.
  34. Zhang, X.Y., Yuan, X.Y., Ma, J., Yuan, L.J. 2009. Research on tissue culture and regeneration of Ceridiphyllum japonicum. Northern horticulture (9): 77-79 (in Chinese).

Cited by

  1. Extractives of Cercidiphyllum japonicum twigs: isolation and structural elucidation of a new galloylflavonol glycoside, anomeric tannins and flavonoids vol.72, pp.9, 2018, https://doi.org/10.1515/hf-2018-0029
  2. Chemical Constituents of the Flowers of Cercidiphyllum japonicum pp.1573-8388, 2019, https://doi.org/10.1007/s10600-019-02638-2