Browse > Article
http://dx.doi.org/10.5658/WOOD.2016.44.4.559

Hydrolysable Tannins from Cercidiphyllum japonicum Bark  

Lee, Min-Sung (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University)
Min, Hee-Jeong (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University)
Si, Chuan-Ling (Tianjin Key Lab of Pulp & Paper, College of Papermaking Science & Technology, Tianjin University of Science & Technology)
Bae, Young-Soo (Department of Forest Biomaterials Engineering, College of Forest and Environment Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.44, no.4, 2016 , pp. 559-570 More about this Journal
Abstract
The EtOAc and $H_2O$ soluble fractions of Katsura tree (Cercidiphyllum japonicum Sieb. Et Zucc) bark extracts were chromatographed on a Sephadex LH-20 column with various aqueous MeOH. Gallic acid (1), methyl galate (2), kurigalin (3), 1,2,3,6-tetra-O-galloyl-${\beta}$-D-glucose (4) and 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose (5) were isolated from EtOAc fraction. Isocorilagin (6) and methyl galate (2) were separated from $H_2O$ fraction. The structure determination was done by $^1H$ and $^{13}C$ NMR. Of these isolated compounds, methyl galate (2), kurigalin (3) and isocorilagin (6) were isolated, for the first time, from the bark extracts of Cercidiphyllum japonicum.
Keywords
Katsura tree (Cercidiphyllum japonicum) bark; Hydrolysable tannins; gallotannin; ellagitannin; column chromatography;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anderson, O.M., Markham, K.R. 2006. Flavonoids: Chemistry, Biochemistry and Applications. Taylor & Francis, New York.
2 Cammann, J., Denzel, K., Schilling, G., Gross, G.G. 1989. Biosynthesis of gallotannins: ${\beta}$-Glucogallindependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,4-tetragalloylglucose. Archives of Biochemistry and Biophysics 273: 58-63.   DOI
3 Chung, S.K., Nam, J.A., Jeon, S.Y., Kim, S.I., Lee, H.J., Chung, T.H., Song, K.S. 2003. A prolyl endopeptidase-inhibiting antioxidant from Phyllanthus ussurensis. Archives of Pharmacal Research 26(12): 1024-1028.   DOI
4 Duan, D., Li, Z., Luo, H., Zhang, W., Chen, L., Xu, X. 2004. Antiviral compounds from traditional Chinese medicines Galla Chinese as inhibitors of HCV NS3 protease. Bioorg Med Chem Lett 14: 6041-6044.   DOI
5 Isagi, Y., Kudo, M., Osumi, K., Sato, K., Sakio, H. 2005. Polymorphic microsatellite and markers for a relictual angiosperm Cercidiphyllum japonicum Sieb. et Zucc. and their utility for Cercidiphyllum magnificum. Mol. Ecol. Notes 5: 596-598.   DOI
6 Kador, P.F., Robison, W.G., Kinoshita, J.H. 1985a. The pharmacology of aldose reductase inhibitors. Annu. Rev. Pharmacol. Toxicol. 25: 691-714.   DOI
7 Kador, P.J., Konishita, J.H., Sharpless, N.E. 1985b. Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications. J. Med. Chem. 28: 841-849.   DOI
8 Kashiwada, Y., Nonaka, G., Nishioka, I. 1988. Galloylsucroses from Rhubarbs. Phytochemistry 27: 1469-1472.   DOI
9 Kwon, D.J. 2010. Chemical constituents and biological activities of certain Acer Species growing in Korea. Ph.D. Dissertation, 211-221.
10 Kwon, D.J., Bae, Y.S. 2009. Ellagitannins from bark of Juglans mandshurica. Mokchae Konghak. 37(5): 480-485.
11 Lampire, O., Mila, I., Raminosoa, M., Michon, V., Herve, C., Penhoat, D., Faucheur, N., Laprevote, O., Scalbert, A. 1998. Polyphenols isolated from the bark of Castanea sativa Mill. Chemical structures and auto-association. Phytochemistry 49: 623-631.   DOI
12 Latte, K.P., Kolodziej, H. 2000. Pelargoniins, new ellagitannins from Pelargonium reniforme. Phytochemistry 54(7): 701-708.   DOI
13 Lee, H.Y., Jeong, H.S. 2005. Isolation and identification of antimicrobial substance from Canavalia gladiata. Food Science and Biotechnology 14(2): 268-274.
14 Lee, T.S., Bae, Y.S. 2015. A Gallotannin from Cercidiphyllum japonicum Leaves. J. Korean Wood Sci. Technol. 43(5): 558-565.   DOI
15 Liu, X., Cui, C., Zhao, M., Wang, J., Luo, W., Yang, B., Jiang, Y. 2008. Identification of phenolics in the fruit of emblica and their antioxidant activities. Food Chemistry 109(4): 909-915.   DOI
16 Luo, W., Zhao, M., Yang, B., Shen, G., Rao, G. 2009. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food chemistry 114(2): 499-504.   DOI
17 Manchester, S.R., Chen, Z.D., Lu, A.M., Uemura, K. 2009. Eastern asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. J. Syst. Evol. 47: 1-42.   DOI
18 Niehaus, J.U., Gross, G.G. 1997. A gallotannin degrading esterase from laves of Pedunculate oak. Phytochemistry 45(8): 1555-1560.   DOI
19 Niemetz, R., Gross, G.G. 2001. Gallotannin biosynthesis: ${\beta}$-glucogallin: hexagalloyl 3-O-galloyltransferase from Rhus typhina leaves. Phytochemistry 58: 657-661.   DOI
20 Nonaka, G., Ishimatsu, M., Ageta, M., Nishioka I. 1989. Tannins and related compounds. LXXVI. Isolation and Characterization of Cercidinins A and B and Cuspinin, Unusual 2,3-(R)-Hexahydroxydiphenoyl Glucoses from Cercidiphyllum japonicum and Castanopsis Cspidata var. sieboldii. Chem. Pharm. Bull. 37(1): 50-53.   DOI
21 Ozawa, T., Kobayashi, S., Seki, R., Imagawa, H. 1984. A new gallotannin from bark of chestnut tree, Castanea crenata Sieb. et Zucc. Agric Biol Chem 48: 1411-1416.   DOI
22 Owen, R.W., Haubner, R., Hull, W.E., Erben, G., Spiegelhalder, B., Bartsch, H., Haber, B. 2003. Isolation and structure elucidantion of the major individual polyphenols in carob fibre. Food and Chemical Toxicology 41: 1727-1738.   DOI
23 Saijo, R., Nonaka, G.I., Nishioka, I. 1990. Gallica acid esters of bergenin and norbergenin from Mallotus Japonicus. Phytochemistry 29: 267-270.   DOI
24 Sancheti, S., Sancheti, S., Bafna, M., Seo, S.Y. 2011. 2,4,6-Trihydroxybenzaldehyde as a potent antidiabetic agent alleviates postprandial hyperglycemia in normal and diabetic rats. Medicinal Chemistry Research. 20: 1181-1187.   DOI
25 Sepulveda, L., Ascacio, A., Raul, R.H., Antonio, A.C., Cristobal, N.A. 2011. Ellagic acid: Biological properties and Biotechnological development for production processes. African Journal of Biotechnology. 10(20): 4518-4523.
26 Steinmetz, W.E. 2010 NMR assignment and characterization of proton exchange of the ellagitannin granatin B. Magnetic Resonance in Chemistry. 48: 565-570.   DOI
27 Tada, M., Sakurai, K. 1991. Antimicrobial compound from Cercidiphyllum japonicum. Phytochemistry 30(4): 1119-1120.   DOI
28 Takasugi, M., Katui, N. 1986. A biphenyl phytoalexin from Cercidiphyllum japonicum. Phytochemistry 25(12): 2751-2752.   DOI
29 Towatari, K., Yoshida, K., Mori, N., Shimizu, K.,Kondo, R., Sakai, K. 2002. Polyphenols from the heartwood of Cercidiphyllum japonicum and their effects on prolifefation of mouse hair epithelial cells. Planta Medica 68: 995-998.   DOI
30 Tanaka, T., Nonaka, G., Nishioka, I. 1985. Punicafolin, an ellagitannin from the leaves of Punica grantum. Phytochemistry 24: 2075-2078.   DOI
31 Wang, D., Kasuga, J., Kuwabara, C., Endoh, K., Fukushi, Y., Fujikawa, S., Arakawa, K. 2012. Presence of supercooling-facilitating hydrolyzable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum. Planta 235: 747-759.   DOI
32 Williamson, J., Kilo, C., Tilton, R.G. 1992. Mechanism of glucose and diabetes-induced vascular dysfunction. In N. Ruderman, J. Brownlee and J. Williamson (eds.), hyperglycemia, diabetes, and vascular disease. American physiology society. New York, pp. 107-132.
33 Yoshida, T., Hatano, T., Ito, H., Okuda, T., Quideau, S. 2009. Structural diversity and an timicrobial activities of ellagitannins. Chemistry and Biology of Ellagitannins. 55-93, World Scientific Publishing, Singapore.
34 Zhang, X.Y., Yuan, X.Y., Ma, J., Yuan, L.J. 2009. Research on tissue culture and regeneration of Ceridiphyllum japonicum. Northern horticulture (9): 77-79 (in Chinese).