참고문헌
- Bilodeau, A., Kodur, V. R., and Hoff, G. C. (2004), Optimization of the Type and Amount of Polypropylene Fibers for Preventing the Spalling of Lightweight Concrete Subjected to Hydrocarbon Fire, Cement Concrete Composite Journal, 26(2), 163-175. https://doi.org/10.1016/S0958-9465(03)00085-4
- Faas, S. E. (1983), 10 MWe Solar Thermal Central Receiver Pilot Plant:Thermal Storage Subsystem Evaluation, Subsystem Activation and Controls Testing Phase, SAND, 83-8015, Sandia National Laboratories, Albuquerque, NM.
- Fernandez, A. I., Martinez, M., Segarra, M., Martorell, I., and Cabeza, L. F. (2010), Selections of Materials with Potential in Sensible Thermal Energy Storage, Solar Energy Materials & Solar Cells, 94, 1723-1729. https://doi.org/10.1016/j.solmat.2010.05.035
- Fletcher, I. A., Welch, S., Torrero, J. L., Carvel, R. O., and Usmani, A. (2007), The Behavior of Concrete Structures in Fire, Journal of Thermal Science, 11(2), 37-52. https://doi.org/10.2298/TSCI0702037F
- Hannant, D. J. (1998), Durability of Polypropylene Fibers in Portland Cement-Based Composites: Eighteen Years of Data, Cement and Concrete Research, 28(12), 1809-1817. https://doi.org/10.1016/S0008-8846(98)00155-0
- John, E., Hale, M., and Selvam, P. (2013), Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems, Solar Energy, 96, 194-204. https://doi.org/10.1016/j.solener.2013.06.033
- Khoury, G. A. (2000), Effect of Fire on Concrete and Concrete Structures, Progress in Structural Engineering and Materials, 2(4), 429-447. https://doi.org/10.1002/pse.51
- Kodur, V. K. R., and Sultan, M. A., (2003), Effect of Temperature on Thermal Properties of High-Strength Concrete, Journal of Materials in Civil Engineering, 15(2), 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
- Kolb, G. L., and Hassani, V. (2006), Proceedings of ISEC ASME International Solar Energy Conference '06': Performance Analysis of Thermocline Energy Storage Proposed for the 1 MW Saguaro Solar Trough Plant, Denver, CO.
- Laing, D., Lehmann, D., and Bahl, C. (2008), Concrete Storage for Solar Thermal Power Plants and Industrial Process Heat, Proceedings of the Third International Renewable Energy Storage Conference, Germany, Berlin, 1-6.
- Laing, D., Steinmann, W. D., and Tamme, Richter, C., (2006), Solid Media Thermal Storage for Parabolic Trough Power Plants, Solar Energy, 80, 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
- Laing, D., Steinmann, W. D., Tamme, R., Wörner, A., and Zunft, S. (2012), Advances in Thermal Energy Storage Development at the German Aerospace Center(DLR), Energy Storage Science and Technology, 1(1), 13-25.
- Laing, D., Steinmann, W. D., Viebahn, P., Grater, F., and Bahl, C. (2010), Economic Analysis and Life Cycle Assessment of Concrete Thermal Energy Storage for Parabolic Trough Power Plants, Journal of Solar Energy Engineering, 132, 041013-1-6. https://doi.org/10.1115/1.4001404
- Neville, A. M. (1995), Properties of concrete (4th ed.), Addison Wesley LOngman Limited.
- Pacheco, J. E., Showalter, S. K., and Kolb, W. J. (2001), Proceedings of Solar Forum, Solar Energy: The Power to Choose ''01: Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants, Washington DC.
- Skinner, J. E., Brown, B. M., and Selvam, R. P. (2011), Testing of High Performance Concrete as a Thermal Energy Storage Medium at High Temperatures, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington DC, USA, 1-6.
- Strasser, M. N., and Selvam, R. P. (2014), A Cost and Performance Comparison of Packed Bed and Structured Thermocline Thermal Energy Storage Systems, Solar Energy, 108, 390-402. https://doi.org/10.1016/j.solener.2014.07.023
- Yuan, H. W., Lu, C. H., Xu, Z. Z., Ni, Y. R., and Lan, X. H. (2012), Mechanical and Thermal Properties of Cement Composite Graphite for Solar Thermal Storage Materials, Solar Energy, 86, 3227-3233. https://doi.org/10.1016/j.solener.2012.08.011