DOI QR코드

DOI QR Code

태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System

  • 투고 : 2015.10.14
  • 심사 : 2015.11.03
  • 발행 : 2016.07.01

초록

이 연구에서는 태양열 에너지 저장용도로 사용하기 위한 시멘트 기반 복합재료의 열적 및 역학적 특성을 파악하였다. 다양한 시멘트 재료의 배합이 섬유보강 시멘트 기반 복합재료의 열적 및 역학적 특성에 미치는 영향을 파악하기 위한 실험연구를 수행하였다. 시멘트 기반 복합재료의 역학적 특성으로써 열싸이클 전과 후의 압축강도 및 인장강도를 측정하였다. 또한, 섬유보강 시멘트 기반 복합재료의 열적 특성으로써 열전도율과 비열을 측정하였다. OPC와 슬래그를 포함한 배합의 잔류압축강도가 가장 크게 나타난다. 그라파이트를 혼합한 배합의 열전도율이 크게 나타나며, 이는 그라파이트가 열저장 시스템의 효율적인 축열과 방열에 유리함을 의미한다. 또한, CSA 또는 지르코늄의 첨가는 섬유보강 복합재료의 비열을 증가시킨다. 실험연구결과는 잡광형 태양열 발전소에서 고성능 복합재료를 사용하는 열저장 시스템 설계에 기초자료로 활용될 수 있다.

The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

키워드

참고문헌

  1. Bilodeau, A., Kodur, V. R., and Hoff, G. C. (2004), Optimization of the Type and Amount of Polypropylene Fibers for Preventing the Spalling of Lightweight Concrete Subjected to Hydrocarbon Fire, Cement Concrete Composite Journal, 26(2), 163-175. https://doi.org/10.1016/S0958-9465(03)00085-4
  2. Faas, S. E. (1983), 10 MWe Solar Thermal Central Receiver Pilot Plant:Thermal Storage Subsystem Evaluation, Subsystem Activation and Controls Testing Phase, SAND, 83-8015, Sandia National Laboratories, Albuquerque, NM.
  3. Fernandez, A. I., Martinez, M., Segarra, M., Martorell, I., and Cabeza, L. F. (2010), Selections of Materials with Potential in Sensible Thermal Energy Storage, Solar Energy Materials & Solar Cells, 94, 1723-1729. https://doi.org/10.1016/j.solmat.2010.05.035
  4. Fletcher, I. A., Welch, S., Torrero, J. L., Carvel, R. O., and Usmani, A. (2007), The Behavior of Concrete Structures in Fire, Journal of Thermal Science, 11(2), 37-52. https://doi.org/10.2298/TSCI0702037F
  5. Hannant, D. J. (1998), Durability of Polypropylene Fibers in Portland Cement-Based Composites: Eighteen Years of Data, Cement and Concrete Research, 28(12), 1809-1817. https://doi.org/10.1016/S0008-8846(98)00155-0
  6. John, E., Hale, M., and Selvam, P. (2013), Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems, Solar Energy, 96, 194-204. https://doi.org/10.1016/j.solener.2013.06.033
  7. Khoury, G. A. (2000), Effect of Fire on Concrete and Concrete Structures, Progress in Structural Engineering and Materials, 2(4), 429-447. https://doi.org/10.1002/pse.51
  8. Kodur, V. K. R., and Sultan, M. A., (2003), Effect of Temperature on Thermal Properties of High-Strength Concrete, Journal of Materials in Civil Engineering, 15(2), 101-107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101)
  9. Kolb, G. L., and Hassani, V. (2006), Proceedings of ISEC ASME International Solar Energy Conference '06': Performance Analysis of Thermocline Energy Storage Proposed for the 1 MW Saguaro Solar Trough Plant, Denver, CO.
  10. Laing, D., Lehmann, D., and Bahl, C. (2008), Concrete Storage for Solar Thermal Power Plants and Industrial Process Heat, Proceedings of the Third International Renewable Energy Storage Conference, Germany, Berlin, 1-6.
  11. Laing, D., Steinmann, W. D., and Tamme, Richter, C., (2006), Solid Media Thermal Storage for Parabolic Trough Power Plants, Solar Energy, 80, 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
  12. Laing, D., Steinmann, W. D., Tamme, R., Wörner, A., and Zunft, S. (2012), Advances in Thermal Energy Storage Development at the German Aerospace Center(DLR), Energy Storage Science and Technology, 1(1), 13-25.
  13. Laing, D., Steinmann, W. D., Viebahn, P., Grater, F., and Bahl, C. (2010), Economic Analysis and Life Cycle Assessment of Concrete Thermal Energy Storage for Parabolic Trough Power Plants, Journal of Solar Energy Engineering, 132, 041013-1-6. https://doi.org/10.1115/1.4001404
  14. Neville, A. M. (1995), Properties of concrete (4th ed.), Addison Wesley LOngman Limited.
  15. Pacheco, J. E., Showalter, S. K., and Kolb, W. J. (2001), Proceedings of Solar Forum, Solar Energy: The Power to Choose ''01: Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants, Washington DC.
  16. Skinner, J. E., Brown, B. M., and Selvam, R. P. (2011), Testing of High Performance Concrete as a Thermal Energy Storage Medium at High Temperatures, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington DC, USA, 1-6.
  17. Strasser, M. N., and Selvam, R. P. (2014), A Cost and Performance Comparison of Packed Bed and Structured Thermocline Thermal Energy Storage Systems, Solar Energy, 108, 390-402. https://doi.org/10.1016/j.solener.2014.07.023
  18. Yuan, H. W., Lu, C. H., Xu, Z. Z., Ni, Y. R., and Lan, X. H. (2012), Mechanical and Thermal Properties of Cement Composite Graphite for Solar Thermal Storage Materials, Solar Energy, 86, 3227-3233. https://doi.org/10.1016/j.solener.2012.08.011