참고문헌
- Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 72, 429-452. https://doi.org/10.1111/nure.12114
- Cardona, F., Andres-Lacueva, C., Tulipani, S., Tinahones, F.J., and Queipo-Ortuno, M.I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24, 1415-1422. https://doi.org/10.1016/j.jnutbio.2013.05.001
- Chandran, L., and Cataldo, R. (2010). Lead poisoning: basics and new developments. P Pediatr Rev. 31, 399-405; quiz 406. https://doi.org/10.1542/pir.31-10-399
- Chu, A.J. (2014). Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflamm. Allergy Drug Targets 13, 34-64. https://doi.org/10.2174/1871528112666131119211002
- Copello, G.J., Pesenti, M.P., Raineri, M., Mebert, A.M., Piehl, L.L., de Celis, E.R., and Diaz, L.E. (2013). Polyphenol-SiO2 hybrid biosorbent for heavy metal removal. Yerba mate waste (Ilex paraguariensis) as polyphenol source: kinetics and isotherm studies. Colloids Surf. B. Biointerfaces 102, 218-226. https://doi.org/10.1016/j.colsurfb.2012.08.015
- Dai, W., Du, H., Fu, L., Jin, C., Xu, Z., and Liu, H. (2009). Effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis niloticus). Biol. Trace Elem. Res. 127, 124-131. https://doi.org/10.1007/s12011-008-8227-3
- Doumouchtsis, K.K., Doumouchtsis, S.K., Doumouchtsis, E.K., and Perrea, D.N. (2009). The effect of lead intoxication on endocrine functions. J. Endocrinol. Invest. 32, 175-183. https://doi.org/10.1007/BF03345710
- Garza, A., Vega, R., and Soto, E. (2006). Cellular mechanisms of lead neurotoxicity. Med. Sci. Monit. 12, RA57-65.
- Joven, J., Micol, V., Segura-Carretero, A., Alonso-Villaverde, C., Menendez, J.A., and Bioactive Food Components, P. (2014). Polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease? Crit. Rev. Food Sci. Nutr. 54, 985-1001. https://doi.org/10.1080/10408398.2011.621772
- Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., and Tai, T.C. (2013). Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779-3827. https://doi.org/10.3390/nu5103779
- Kusumoto, M., Kamobayashi, H., Sato, D., Komori, M., Yoshimura, M., Hamada, A., Kohda, Y., Tomita, K., and Saito, H. (2011). Alleviation of cisplatin-induced acute kidney injury using phytochemical polyphenols is accompanied by reduced accumulation of indoxyl sulfate in rats. Clin. Exp. Nephrol. 15, 820-830. https://doi.org/10.1007/s10157-011-0524-z
- Li, C., Xu, M., Wang, S., Yang, X., Zhou, S., Zhang, J., Liu, Q., and Sun, Y. (2011). Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol. Lett. 203, 48-53. https://doi.org/10.1016/j.toxlet.2011.03.002
- Li, Y.W., Zhang, Y., Zhang, L., Li, X., Yu, J.B., Zhang, H.T., Tan, B.B., Jiang, L.H., Wang, Y.X., Liang, Y., et al. (2014). Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-kappaB p65 signal pathway. Gene 542, 46-51. https://doi.org/10.1016/j.gene.2014.03.021
- Liu, M.Y., Hsieh, W.C., and Yang, B.C. (2000). In vitro aberrant gene expression as the indicator of lead-induced neurotoxicity in U-373MG cells. Toxicology 147, 59-64. https://doi.org/10.1016/S0300-483X(00)00186-4
- Liu, C.M., Sun, Y.Z., Sun, J.M., Ma, J.Q., and Cheng, C. (2012). Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NFkappaB pathway. Biochim. Biophys. Acta 1820, 1693-1703. https://doi.org/10.1016/j.bbagen.2012.06.011
- Luo, W., Ruan, D., Yan, C., Yin, S., and Chen, J. (2012). Effects of chronic lead exposure on functions of nervous system in Chinese children and developmental rats. Neurotoxicology 33, 862-871. https://doi.org/10.1016/j.neuro.2012.03.008
- Luo, M., Xu, Y., Cai, R., Tang, Y., Ge, M.M., Liu, Z.H., Xu, L., Hu, F., Ruan, D.Y., and Wang, H.L. (2014). Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol. Lett. 225, 78-85. https://doi.org/10.1016/j.toxlet.2013.11.025
- Mandal, S., Mukherjee, S., Chowdhury, K.D., Sarkar, A., Basu, K., Paul, S., Karmakar, D., Chatterjee, M., Biswas, T., Sadhukhan, G.C., et al. (2012). S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead. Biochim. Biophys. Acta 1820, 9-23. https://doi.org/10.1016/j.bbagen.2011.09.019
- Mason, L.H., Harp, J.P., and Han, D.Y. (2014). Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Res. Int. 2014, 840547.
- Mishra, K.P., Singh, V.K., Rani, R., Yadav, V.S., Chandran, V., Srivastava, S.P., and Seth, P.K. (2003). Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology 188, 251-259. https://doi.org/10.1016/S0300-483X(03)00091-X
- Murakami, A. (2014). Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Arch. Biochem. Biophys. 557, 3-10. https://doi.org/10.1016/j.abb.2014.04.018
- Navarro-Moreno, L.G., Quintanar-Escorza, M.A., Gonzalez, S., Mondragon, R., Cerbon-Solorzano, J., Valdes, J., and Calderon-Salinas, J.V. (2009). Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells. Toxicol. In Vitro 23, 1298-1304. https://doi.org/10.1016/j.tiv.2009.07.020
- Nemsadze, K., Sanikidze, T., Ratiani, L., Gabunia, L., and Sharashenidze, T. (2009). Mechanisms of lead-induced poisoning. Georgian Med. News 92-96.
- Ohara, M., and Ohyama, Y. (2014). Delivery and application of dietary polyphenols to target organs, tissues and intracellular organelles. Curr. Drug Metabol. 15, 37-47. https://doi.org/10.2174/1389200214666131210143407
- Poreba, R., Gac, P., Poreba, M., and Andrzejak, R. (2012). Assessment of cardiovascular risk in workers occupationally exposed to lead without clinical presentation of cardiac involvement. Envir. Toxicol. Pharmacol. 34, 351-357. https://doi.org/10.1016/j.etap.2012.05.008
- Qiao, J., Kong, X., Kong, A., and Han, M. (2014). Pharmacokinetics and biotransformation of tea polyphenols. Curr. Drug Metabol. 15, 30-36. https://doi.org/10.2174/1389200214666131229111336
- Shinkai, Y., and Kaji, T. (2012). Cellular defense mechanisms against lead toxicity in the vascular system. Biol. Pharm. Bull. 35, 1885-1891. https://doi.org/10.1248/bpb.b212018
- Struzynska, L., Dabrowska-Bouta, B., Koza, K., and Sulkowski, G. (2007). Inflammation-like glial response in lead-exposed immature rat brain. Toxicol. Sci. 95, 156-162. https://doi.org/10.1093/toxsci/kfl134
- van der Kuijp, T.J., Huang, L., and Cherry, C.R. (2013). Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts. Environ. Health 12, 61. https://doi.org/10.1186/1476-069X-12-61
- Warniment, C., Tsang, K., and Galazka, S.S. (2010). Lead poisoning in children. Am. Fam. Physician 81, 751-757.
- Yang, Y.S., Wang, C.J., Huang, C.N., Chen, M.L., Chen, M.J., and Peng, C.H. (2013). Polyphenols of Hibiscus sabdariffa improved diabetic nephropathy via attenuating renal epithelial mesenchymal transition. J. Agric. Food Chem. 61, 7545-7551. https://doi.org/10.1021/jf4020735
- Yang, P., He, X., and Malhotra, A. (2014). Epigenetic targets of polyphenols in cancer. J Environ Pathol Toxicol Oncol. 33, 159-165. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2014011094
- Ye, X., and Wong, O. (2006). Lead exposure, lead poisoning, and lead regulatory standards in China, 1990-2005. Regul. Toxicol. Pharmacol. 46, 157-162. https://doi.org/10.1016/j.yrtph.2006.04.003
- Zou, D., and Xie, A. (2013). Influence of polyphenol-plasma protein interaction on the antioxidant properties of polyphenols. Curr. Drug Metabol. 14, 451-455. https://doi.org/10.2174/1389200211314040008
피인용 문헌
- Actinidia chinensis Planch. Improves the Indices of Antioxidant and Anti-Inflammation Status of Type 2 Diabetes Mellitus by Activating Keap1 and Nrf2 via the Upregulation of MicroRNA-424 vol.2017, 2017, https://doi.org/10.1155/2017/7038789
- Silica nanoparticles and lead acetate co-exposure triggered synergistic cytotoxicity in A549 cells through potentiation of mitochondria-dependent apoptosis induction vol.52, 2017, https://doi.org/10.1016/j.etap.2017.04.001
- Antioxidants Attenuate Acute and Chronic Itch: Peripheral and Central Mechanisms of Oxidative Stress in Pruritus vol.33, pp.4, 2017, https://doi.org/10.1007/s12264-016-0076-z
- Effect of an Extract from Aronia melanocarpa L. Berries on the Body Status of Zinc and Copper under Chronic Exposure to Cadmium: An In Vivo Experimental Study vol.9, pp.12, 2017, https://doi.org/10.3390/nu9121374
- TRAIL mutant membrane penetrating peptide alike (TMPPA) TRAIL-Mu3 enhances the antitumor effects of TRAIL in vitro and in vivo vol.16, pp.6, 2017, https://doi.org/10.3892/mmr.2017.7791
- Sulforaphane induces p53-deficient SW480 cell apoptosis via the ROS-MAPK signaling pathway vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7558
- The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191192
- Protective effect of tea against lead and cadmium-induced oxidative stress—a review pp.1572-8773, 2018, https://doi.org/10.1007/s10534-018-0153-z
- Dexmedetomidine Ameliorates Acute Stress-Induced Kidney Injury by Attenuating Oxidative Stress and Apoptosis through Inhibition of the ROS/JNK Signaling Pathway vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/4035310
- Therapeutic Role of Green Tea Polyphenols in Improving Fertility: A Review vol.10, pp.7, 2018, https://doi.org/10.3390/nu10070834
- Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo vol.373, pp.2, 2018, https://doi.org/10.1007/s00441-018-2815-0
- Flavonoids in Kidney Health and Disease vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00394
- Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis elegans vol.8, pp.2, 2019, https://doi.org/10.3390/foods8020075
- iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress vol.19, pp.None, 2018, https://doi.org/10.1016/j.redox.2018.08.009
- Tea polyphenols protect bovine mammary epithelial cells from hydrogen peroxide-induced oxidative damage in vitro1 vol.96, pp.10, 2018, https://doi.org/10.1093/jas/sky278
- Potential Non-neoplastic Applications for Polyphenols in Stem Cell Utilization vol.20, pp.3, 2016, https://doi.org/10.2174/1389450119666180731092453
- The TRIM protein Mitsugumin 53 enhances survival and therapeutic efficacy of stem cells in murine traumatic brain injury vol.10, pp.1, 2016, https://doi.org/10.1186/s13287-019-1433-4
- Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review vol.20, pp.24, 2019, https://doi.org/10.3390/ijms20246196
- Xanthones protects lead-induced chronic kidney disease (CKD) via activating Nrf-2 and modulating NF-kB, MAPK pathway vol.21, pp.None, 2020, https://doi.org/10.1016/j.bbrep.2019.100718
- Xanthones protects lead-induced chronic kidney disease (CKD) via activating Nrf-2 and modulating NF-kB, MAPK pathway vol.21, pp.None, 2020, https://doi.org/10.1016/j.bbrep.2019.100718
- Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways vol.47, pp.4, 2016, https://doi.org/10.1007/s11033-020-05346-1
- Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health vol.1, pp.2, 2016, https://doi.org/10.1002/fft2.25
- Effects of modified atmosphere packaging combined with tea polyphenol treatment on the quality of grass carp during cold storage vol.559, pp.None, 2020, https://doi.org/10.1088/1755-1315/559/1/012029
- Thunbergia laurifolia leaf extract partially recovers lead-induced renotoxicity through modulating the cell signaling pathways vol.27, pp.12, 2016, https://doi.org/10.1016/j.sjbs.2020.08.016
- Effect and Mechanism Study of Sodium Houttuyfonate on Ventilator-Induced Lung Injury by Inhibiting ROS and Inflammation vol.62, pp.6, 2021, https://doi.org/10.3349/ymj.2021.62.6.545
- Arsenic-induced uterine apoptotic damage is protected by ethyl acetate fraction of Camellia sinensis (green tea) via Bcl-2-BAX through NF-κB regulations in Wistar rats vol.28, pp.30, 2016, https://doi.org/10.1007/s11356-021-13457-w
- Differential Effects of Green Tea Powders on the Protection of Brown Tsaiya and Kaiya Ducklings against Trichothecene T-2 Toxin Toxicity vol.11, pp.9, 2016, https://doi.org/10.3390/ani11092541
- Plant Polyphenols: Potential Antidotes for Lead Exposure vol.199, pp.10, 2021, https://doi.org/10.1007/s12011-020-02498-w