References
- Aoyagi, Y., Kawakami, R., Osanai, H., Hibi, T., and Nemoto, T. (2015). A rapid optical clearing protocol using 2,2'-thiodiethanol for microscopic observation of fixed mouse brain. Plos One 10, e0116280. https://doi.org/10.1371/journal.pone.0116280
- Bolin, F.P., Preuss, L.E., Taylor, R.C., and Ference, R.J. (1989). Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, 2297. https://doi.org/10.1364/AO.28.002297
- Choi, B., Tsu, L., Chen, E., Ishak, T.S., Iskandar, S.M., Chess, S., and Nelson, J.S. (2005). Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg. Med. 36, 72-75. https://doi.org/10.1002/lsm.20116
- Choi, H.M.T., Chang, J.Y., Trinh, L.A., Padilla, J.E., Fraser, S.E., and Pierce, N.A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208-1212. https://doi.org/10.1038/nbt.1692
- Choi, H.M.T., Beck, V.A., and Pierce, N.A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284-4294. https://doi.org/10.1021/nn405717p
- Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature 497, 332-337. https://doi.org/10.1038/nature12107
- Costantini, I., Ghobril, J.-P., Di Giovanna, A.P., Mascaro, A.L.A., Silvestri, L., Mullenbroich, M.C., Onofri, L., Conti, V., Vanzi, F., Sacconi, L., et al. (2015). A versatile clearing agent for multimodal brain imaging. Sci. Rep. 5, 9808. https://doi.org/10.1038/srep09808
- Dodt, H.-U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C.P., Deininger, K., Deussing, J.M., Eder, M., Zieglgansberger, W., and Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331-336. https://doi.org/10.1038/nmeth1036
- Economo, M.N., Clack, N.G., Lavis, L.D., Gerfen, C.R., Svoboda, K., Myers, E.W., and Chandrashekar, J. (2016). A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566.
- Erturk, A., Becker, K., Jahrling, N., Mauch, C.P., Hojer, C.D., Egen, J.G., Hellal, F., Bradke, F., Sheng, M., and Dodt, H.-U. (2012a). Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983-1995. https://doi.org/10.1038/nprot.2012.119
- Erturk, A., Mauch, C.P., Hellal, F., Forstner, F., Keck, T., Becker, K., Jahrling, N., Steffens, H., Richter, M., Hubener, M., et al. (2012b). Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat. Med. 18, 166-171. https://doi.org/10.1038/nm.2600
- Gleave, J.A., Lerch, J.P., Henkelman, R.M., and Nieman, B.J. (2013). A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells. PloS One 8, e72039-e72039. https://doi.org/10.1371/journal.pone.0072039
- Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., Fukami, K., Sakaue-Sawano, A., and Miyawaki, A. (2011). Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481-1488. https://doi.org/10.1038/nn.2928
- Hama, H., Hioki, H., Namiki, K., Hoshida, T., Kurokawa, H., Ishidate, F., Kaneko, T., Akagi, T., Saito, T., Saido, T., et al. (2015). ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518-1529. https://doi.org/10.1038/nn.4107
- Hofman, F.M., and Taylor, C.R. (2001). Immunohistochemistry. In current protocols in immunology. (John Wiley & Sons, Inc.).
- Hopwood, D. (1972). Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 4, 267-303. https://doi.org/10.1007/BF01005005
- Hua, L., Zhou, R., Thirumalai, D., and Berne, B.J. (2008). Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. 105, 16928-16933. https://doi.org/10.1073/pnas.0808427105
- Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., et al. (1991). Optical coherence tomography. Science 254, 1178-1181. https://doi.org/10.1126/science.1957169
- Ke, M.-T., Fujimoto, S., and Imai, T. (2013). SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154-1161. https://doi.org/10.1038/nn.3447
- Keller, P.J., and Ahrens, M.B. (2015). Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85, 462-483. https://doi.org/10.1016/j.neuron.2014.12.039
- Kim, S.-Y., Chung, K., and Deisseroth, K. (2013). Light microscopy mapping of connections in the intact brain. Trends Cogn. Sci. 17, 596-599. https://doi.org/10.1016/j.tics.2013.10.005
- Kim, S.-Y., Cho, J.H., Murray, E., Bakh, N., Choi, H., Ohn, K., Ruelas, L., Hubbert, A., McCue, M., Vassallo, S.L., et al. (2015). Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. U SA 112, E6274-E6283. https://doi.org/10.1073/pnas.1510133112
- Kurihara, D., Mizuta, Y., Sato, Y., and Higashiyama, T. (2015). ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Dev. Camb. Engl. 142, 4168-4179.
- Kuwajima, T., Sitko, A.A., Bhansali, P., Jurgens, C., Guido, W., and Mason, C. (2013). ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140, 1364-1368. https://doi.org/10.1242/dev.091844
- Lee, E., Choi, J., Jo, Y., Kim, J.Y., Jang, Y.J., Lee, H.M., Kim, S.Y., Lee, H.-J., Cho, K., Jung, N., et al. (2016). ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631. https://doi.org/10.1038/srep18631
- Long, D.J., and Buggs, C. (2008). Microwave oven-based technique for immunofluorescent staining of paraffin-embedded tissues. J. Mol. Histol. 39, 1-4. https://doi.org/10.1007/s10735-007-9093-6
- Mao, Z., Zhu, D., Hu, Y., Wen, X., and Han, Z. (2008). Influence of alcohols on the optical clearing effect of skin in vitro. J. Biomed. Opt. 13, 021104. https://doi.org/10.1117/1.2892684
- McGurk, L., Morrison, H., Keegan, L.P., Sharpe, J., and O'Connell, M.A. (2007). Three-Dimensional Imaging of Drosophila melanogaster. PLoS One 2, e834. https://doi.org/10.1371/journal.pone.0000834
- Muehllehner, G., and Karp, J.S. (2006). Positron emission tomography. Phys. Med. Biol. 51, R117. https://doi.org/10.1088/0031-9155/51/13/R08
- Murray, E., Cho, J.H., Goodwin, D., Ku, T., Swaney, J., Kim, S.-Y., Choi, H., Park, Y.-G., Park, J.-Y., Hubbert, A., et al. (2015). Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500-1514. https://doi.org/10.1016/j.cell.2015.11.025
- Pallotto, M., Watkins, P.V., Fubara, B., Singer, J.H., and Briggman, K.L. (2015). Extracellular space preservation aids the connectomic analysis of neural circuits. eLife 4.
- Palmer, W.M., Martin, A.P., Flynn, J.R., Reed, S.L., White, R.G., Furbank, R.T., and Grof, C.P.L. (2015). PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci. Rep. 5, 13492. https://doi.org/10.1038/srep13492
- Reiser, M.F., Semmler, W., and Hricak, H. (2007). Magnetic Resonance Tomography (Springer Science & Business Media).
- Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., and Tessier-Lavigne, M. (2014). iDISCO: a simple, rapid method to immunolabel large tissue samples for volume Imaging. Cell 159, 896-910. https://doi.org/10.1016/j.cell.2014.10.010
- Richardson, D.S., and Lichtman, J.W. (2015). Clarifying tissue clearing. Cell 162, 246-257. https://doi.org/10.1016/j.cell.2015.06.067
- Sillitoe, R.V., and Hawkes, R. (2002). Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235-244. https://doi.org/10.1177/002215540205000211
- Spalteholz, W. (1914). Uber das Durchsichtigmachen von menschlichen und tierischen Praparaten (Leipzig: S. Hierzel).
- Sung, H.-W., Hsu, H.-L., Shih, C.-C., and Lin, D.-S. (1996). Crosslinking characteristics of biological tissues fixed with monofunctional or multifunctional epoxy compounds. Biomaterials 17, 1405-1410. https://doi.org/10.1016/0142-9612(96)87282-6
- Susaki, E.A., and Ueda, H.R. (2016). Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137-157. https://doi.org/10.1016/j.chembiol.2015.11.009
- Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.M., Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., et al. (2014). Whole-brain imaging with single-cell resolution using chemical cocktails and computational Analysis. Cell 157, 726-739. https://doi.org/10.1016/j.cell.2014.03.042
- Susaki, E.A., Tainaka, K., Perrin, D., Yukinaga, H., Kuno, A., and Ueda, H.R. (2015). Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10, 1709-1727. https://doi.org/10.1038/nprot.2015.085
- Sylwestrak, E.L., Rajasethupathy, P., Wright, M.A., Jaffe, A., and Deisseroth, K. (2016). Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164, 792-804. https://doi.org/10.1016/j.cell.2016.01.038
- Tainaka, K., Kubota, S.I., Suyama, T.Q., Susaki, E.A., Perrin, D., Ukai-Tadenuma, M., Ukai, H., and Ueda, H.R. (2014). Wholebody imaging with single-cell resolution by tissue decolorization. Cell 159, 911-924. https://doi.org/10.1016/j.cell.2014.10.034
- Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646. https://doi.org/10.1016/j.cell.2014.09.039
- Tomer, R., Ye, L., Hsueh, B., and Deisseroth, K. (2014). Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682-1697. https://doi.org/10.1038/nprot.2014.123
- Tomer, R., Lovett-Barron, M., Kauvar, I., Andalman, A., Burns, V.M., Sankaran, S., Grosenick, L., Broxton, M., Yang, S., and Deisseroth, K. (2015). SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796-1806. https://doi.org/10.1016/j.cell.2015.11.061
- Tuchin, V.V. (2015). Tissue optics and photonics: light-tissue interaction. J. Biomed. Photonics Eng. 1, 98-134.
- Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., and Ugurbil, K. (2013). The WU-Minn human connectome project: an overview. NeuroImage 80, 62-79. https://doi.org/10.1016/j.neuroimage.2013.05.041
- Warner, C.A., Biedrzycki, M.L., Jacobs, S.S., Wisser, R.J., Caplan, J.L., and Sherrier, D.J. (2014). An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166, 1684-1687. https://doi.org/10.1104/pp.114.244673
- Yang, B., Treweek, J.B., Kulkarni, R.P., Deverman, B.E., Chen, C.-K., Lubeck, E., Shah, S., Cai, L., and Gradinaru, V. (2014). Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945-958. https://doi.org/10.1016/j.cell.2014.07.017
Cited by
- Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs vol.46, pp.3, 2016, https://doi.org/10.9729/AM.2016.46.3.134
- Quantitative approaches for investigating the spatial context of gene expression vol.9, pp.2, 2017, https://doi.org/10.1002/wsbm.1369
- Application of Tissue Clearing Techniques to 3D Study of Infectious Disease Pathology in Fish vol.52, pp.2, 2017, https://doi.org/10.3147/jsfp.52.96
- Neuroscience in the third dimension: shedding new light on the brain with tissue clearing vol.10, pp.1, 2017, https://doi.org/10.1186/s13041-017-0314-y
- Synapsin-based approaches to brain plasticity in adult social insects vol.18, 2016, https://doi.org/10.1016/j.cois.2016.08.009
- Genetically encoded indicators of neuronal activity vol.19, pp.9, 2016, https://doi.org/10.1038/nn.4359
- Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines vol.65, pp.7, 2017, https://doi.org/10.1248/cpb.c17-00096
- Current status, pitfalls and future directions in the diagnosis and therapy of lymphatic malformation vol.11, pp.8, 2017, https://doi.org/10.1002/jbio.201700124
- Does pathology of small venules contribute to cerebral microinfarcts and dementia? vol.144, pp.5, 2017, https://doi.org/10.1111/jnc.14228
- Combination of analytical and experimental optical clearing of rodent specimen for detecting beta-carotene: phantom study vol.23, pp.09, 2018, https://doi.org/10.1117/1.JBO.23.9.095002
- Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models vol.5, pp.2296-858X, 2018, https://doi.org/10.3389/fmed.2018.00179
- Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy vol.23, pp.05, 2018, https://doi.org/10.1117/1.JBO.23.5.055003
- Anticancer drug discovery using multicellular tumor spheroid models vol.14, pp.3, 2019, https://doi.org/10.1080/17460441.2019.1570129
- Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine pp.13501925, 2019, https://doi.org/10.1111/nmo.13560
- Genistein diet does not modify crypt morphology in the ob/ob mouse jejunum: a comparison of cryostat and clearing techniques vol.11, pp.None, 2018, https://doi.org/10.2147/dmso.s182501
- Tissue-Clearing Techniques Enable Three-Dimensional Visualization of Aerosolized Model Compound and Lung Structure at the Alveolar Scale vol.41, pp.1, 2016, https://doi.org/10.1248/bpb.b17-00348
- Immunolabeling of Cleared Human Pancreata Provides Insights into Three-Dimensional Pancreatic Anatomy and Pathology vol.188, pp.7, 2016, https://doi.org/10.1016/j.ajpath.2018.04.002
- Advances in CLARITY-based tissue clearing and imaging vol.16, pp.3, 2016, https://doi.org/10.3892/etm.2018.6374
- Copper signalling: causes and consequences vol.16, pp.1, 2016, https://doi.org/10.1186/s12964-018-0277-3
- Modified CLARITY Achieving Faster and Better Intact Mouse Brain Clearing and Immunostaining vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-46814-4
- Imaging the brain in 3D using a combination of CUBIC and immunofluorescence staining vol.10, pp.4, 2016, https://doi.org/10.1364/boe.10.002141
- The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance vol.8, pp.1, 2016, https://doi.org/10.3390/biology8010010
- Tissue Clearing and Its Application to Bone and Dental Tissues vol.98, pp.6, 2016, https://doi.org/10.1177/0022034519844510
- High‐resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO) vol.12, pp.8, 2016, https://doi.org/10.1002/jbio.201800368
- Advances in Ex Situ Tissue Optical Clearing vol.13, pp.8, 2016, https://doi.org/10.1002/lpor.201800292
- Transformation and species identification of CuO nanoparticles in plant cells (Nicotiana tabacum) vol.6, pp.9, 2016, https://doi.org/10.1039/c9en00781d
- Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids vol.116, pp.10, 2019, https://doi.org/10.1002/bit.27105
- Application of Hydrogen Peroxide-Melanin Bleaching and Fluorescent Nuclear Staining for Whole-Body Clearing and Imaging in Fish vol.54, pp.4, 2016, https://doi.org/10.3147/jsfp.54.101
- Brain-wide functional architecture remodeling by alcohol dependence and abstinence vol.117, pp.4, 2016, https://doi.org/10.1073/pnas.1909915117
- Clearing, immunofluorescence, and confocal microscopy for the three-dimensional imaging of murine testes and study of testis biology vol.209, pp.3, 2016, https://doi.org/10.1016/j.jsb.2020.107449
- Three-Dimensional Approaches in Histopathological Tissue Clearing System vol.52, pp.1, 2016, https://doi.org/10.15324/kjcls.2020.52.1.1
- Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovary† vol.102, pp.5, 2020, https://doi.org/10.1093/biolre/ioaa012
- Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment vol.31, pp.7, 2016, https://doi.org/10.1021/acs.bioconjchem.0c00263
- Quantitative assessment of optical clearing methods on formalin-fixed human lymphoid tissue vol.216, pp.11, 2020, https://doi.org/10.1016/j.prp.2020.153136
- A clearing protocol for Galleria mellonella larvae: Visualization of internalized fluorescent nanoparticles vol.60, pp.None, 2016, https://doi.org/10.1016/j.nbt.2020.08.002
- Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids vol.22, pp.1, 2016, https://doi.org/10.3390/ijms22010266
- Current Status of Tissue Clearing and the Path Forward in Neuroscience vol.12, pp.1, 2016, https://doi.org/10.1021/acschemneuro.0c00563
- Tissue clearing technique: Recent progress and biomedical applications vol.238, pp.2, 2016, https://doi.org/10.1111/joa.13309
- Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes vol.70, pp.2, 2021, https://doi.org/10.2144/btn-2020-0063
- Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis vol.44, pp.2, 2016, https://doi.org/10.14348/molcells.2021.0006
- Three-dimensional architecture of nephrons in the normal and cystic kidney vol.99, pp.3, 2016, https://doi.org/10.1016/j.kint.2020.09.032
- A guidebook for DISCO tissue clearing vol.17, pp.3, 2016, https://doi.org/10.15252/msb.20209807
- Optical clearing reveals TNBS-induced morphological changes of VGLUT2-positive nerve fibers in mouse colorectum vol.320, pp.4, 2016, https://doi.org/10.1152/ajpgi.00363.2020
- Tutorial: practical considerations for tissue clearing and imaging vol.16, pp.6, 2021, https://doi.org/10.1038/s41596-021-00502-8
- A simple optical tissue clearing pipeline for 3D vasculature imaging of the mediastinal organs in mice vol.102, pp.4, 2016, https://doi.org/10.1111/iep.12399
- Tissue clearing and 3D imaging - putting immune cells into context vol.134, pp.15, 2016, https://doi.org/10.1242/jcs.258494
- Tissue optical clearing for 3D visualization of vascular networks: A review vol.141, pp.None, 2021, https://doi.org/10.1016/j.vph.2021.106905
- Silicon nitride: a potent solid-state bioceramic inactivator of ssRNA viruses vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-82608-3