DOI QR코드

DOI QR Code

Clearing and Labeling Techniques for Large-Scale Biological Tissues

  • Seo, Jinyoung (Department of Chemistry, Seoul National University) ;
  • Choe, Minjin (Department of Biophysics and Chemical Biology, Seoul National University) ;
  • Kim, Sung-Yon (Department of Chemistry, Seoul National University)
  • Received : 2016.04.05
  • Accepted : 2016.05.03
  • Published : 2016.06.30

Abstract

Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems.

Keywords

References

  1. Aoyagi, Y., Kawakami, R., Osanai, H., Hibi, T., and Nemoto, T. (2015). A rapid optical clearing protocol using 2,2'-thiodiethanol for microscopic observation of fixed mouse brain. Plos One 10, e0116280. https://doi.org/10.1371/journal.pone.0116280
  2. Bolin, F.P., Preuss, L.E., Taylor, R.C., and Ference, R.J. (1989). Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, 2297. https://doi.org/10.1364/AO.28.002297
  3. Choi, B., Tsu, L., Chen, E., Ishak, T.S., Iskandar, S.M., Chess, S., and Nelson, J.S. (2005). Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg. Med. 36, 72-75. https://doi.org/10.1002/lsm.20116
  4. Choi, H.M.T., Chang, J.Y., Trinh, L.A., Padilla, J.E., Fraser, S.E., and Pierce, N.A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208-1212. https://doi.org/10.1038/nbt.1692
  5. Choi, H.M.T., Beck, V.A., and Pierce, N.A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284-4294. https://doi.org/10.1021/nn405717p
  6. Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature 497, 332-337. https://doi.org/10.1038/nature12107
  7. Costantini, I., Ghobril, J.-P., Di Giovanna, A.P., Mascaro, A.L.A., Silvestri, L., Mullenbroich, M.C., Onofri, L., Conti, V., Vanzi, F., Sacconi, L., et al. (2015). A versatile clearing agent for multimodal brain imaging. Sci. Rep. 5, 9808. https://doi.org/10.1038/srep09808
  8. Dodt, H.-U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C.P., Deininger, K., Deussing, J.M., Eder, M., Zieglgansberger, W., and Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331-336. https://doi.org/10.1038/nmeth1036
  9. Economo, M.N., Clack, N.G., Lavis, L.D., Gerfen, C.R., Svoboda, K., Myers, E.W., and Chandrashekar, J. (2016). A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566.
  10. Erturk, A., Becker, K., Jahrling, N., Mauch, C.P., Hojer, C.D., Egen, J.G., Hellal, F., Bradke, F., Sheng, M., and Dodt, H.-U. (2012a). Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983-1995. https://doi.org/10.1038/nprot.2012.119
  11. Erturk, A., Mauch, C.P., Hellal, F., Forstner, F., Keck, T., Becker, K., Jahrling, N., Steffens, H., Richter, M., Hubener, M., et al. (2012b). Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat. Med. 18, 166-171. https://doi.org/10.1038/nm.2600
  12. Gleave, J.A., Lerch, J.P., Henkelman, R.M., and Nieman, B.J. (2013). A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells. PloS One 8, e72039-e72039. https://doi.org/10.1371/journal.pone.0072039
  13. Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., Fukami, K., Sakaue-Sawano, A., and Miyawaki, A. (2011). Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481-1488. https://doi.org/10.1038/nn.2928
  14. Hama, H., Hioki, H., Namiki, K., Hoshida, T., Kurokawa, H., Ishidate, F., Kaneko, T., Akagi, T., Saito, T., Saido, T., et al. (2015). ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518-1529. https://doi.org/10.1038/nn.4107
  15. Hofman, F.M., and Taylor, C.R. (2001). Immunohistochemistry. In current protocols in immunology. (John Wiley & Sons, Inc.).
  16. Hopwood, D. (1972). Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 4, 267-303. https://doi.org/10.1007/BF01005005
  17. Hua, L., Zhou, R., Thirumalai, D., and Berne, B.J. (2008). Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. 105, 16928-16933. https://doi.org/10.1073/pnas.0808427105
  18. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., et al. (1991). Optical coherence tomography. Science 254, 1178-1181. https://doi.org/10.1126/science.1957169
  19. Ke, M.-T., Fujimoto, S., and Imai, T. (2013). SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154-1161. https://doi.org/10.1038/nn.3447
  20. Keller, P.J., and Ahrens, M.B. (2015). Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85, 462-483. https://doi.org/10.1016/j.neuron.2014.12.039
  21. Kim, S.-Y., Chung, K., and Deisseroth, K. (2013). Light microscopy mapping of connections in the intact brain. Trends Cogn. Sci. 17, 596-599. https://doi.org/10.1016/j.tics.2013.10.005
  22. Kim, S.-Y., Cho, J.H., Murray, E., Bakh, N., Choi, H., Ohn, K., Ruelas, L., Hubbert, A., McCue, M., Vassallo, S.L., et al. (2015). Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. U SA 112, E6274-E6283. https://doi.org/10.1073/pnas.1510133112
  23. Kurihara, D., Mizuta, Y., Sato, Y., and Higashiyama, T. (2015). ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Dev. Camb. Engl. 142, 4168-4179.
  24. Kuwajima, T., Sitko, A.A., Bhansali, P., Jurgens, C., Guido, W., and Mason, C. (2013). ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140, 1364-1368. https://doi.org/10.1242/dev.091844
  25. Lee, E., Choi, J., Jo, Y., Kim, J.Y., Jang, Y.J., Lee, H.M., Kim, S.Y., Lee, H.-J., Cho, K., Jung, N., et al. (2016). ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631. https://doi.org/10.1038/srep18631
  26. Long, D.J., and Buggs, C. (2008). Microwave oven-based technique for immunofluorescent staining of paraffin-embedded tissues. J. Mol. Histol. 39, 1-4. https://doi.org/10.1007/s10735-007-9093-6
  27. Mao, Z., Zhu, D., Hu, Y., Wen, X., and Han, Z. (2008). Influence of alcohols on the optical clearing effect of skin in vitro. J. Biomed. Opt. 13, 021104. https://doi.org/10.1117/1.2892684
  28. McGurk, L., Morrison, H., Keegan, L.P., Sharpe, J., and O'Connell, M.A. (2007). Three-Dimensional Imaging of Drosophila melanogaster. PLoS One 2, e834. https://doi.org/10.1371/journal.pone.0000834
  29. Muehllehner, G., and Karp, J.S. (2006). Positron emission tomography. Phys. Med. Biol. 51, R117. https://doi.org/10.1088/0031-9155/51/13/R08
  30. Murray, E., Cho, J.H., Goodwin, D., Ku, T., Swaney, J., Kim, S.-Y., Choi, H., Park, Y.-G., Park, J.-Y., Hubbert, A., et al. (2015). Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500-1514. https://doi.org/10.1016/j.cell.2015.11.025
  31. Pallotto, M., Watkins, P.V., Fubara, B., Singer, J.H., and Briggman, K.L. (2015). Extracellular space preservation aids the connectomic analysis of neural circuits. eLife 4.
  32. Palmer, W.M., Martin, A.P., Flynn, J.R., Reed, S.L., White, R.G., Furbank, R.T., and Grof, C.P.L. (2015). PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci. Rep. 5, 13492. https://doi.org/10.1038/srep13492
  33. Reiser, M.F., Semmler, W., and Hricak, H. (2007). Magnetic Resonance Tomography (Springer Science & Business Media).
  34. Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., and Tessier-Lavigne, M. (2014). iDISCO: a simple, rapid method to immunolabel large tissue samples for volume Imaging. Cell 159, 896-910. https://doi.org/10.1016/j.cell.2014.10.010
  35. Richardson, D.S., and Lichtman, J.W. (2015). Clarifying tissue clearing. Cell 162, 246-257. https://doi.org/10.1016/j.cell.2015.06.067
  36. Sillitoe, R.V., and Hawkes, R. (2002). Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235-244. https://doi.org/10.1177/002215540205000211
  37. Spalteholz, W. (1914). Uber das Durchsichtigmachen von menschlichen und tierischen Praparaten (Leipzig: S. Hierzel).
  38. Sung, H.-W., Hsu, H.-L., Shih, C.-C., and Lin, D.-S. (1996). Crosslinking characteristics of biological tissues fixed with monofunctional or multifunctional epoxy compounds. Biomaterials 17, 1405-1410. https://doi.org/10.1016/0142-9612(96)87282-6
  39. Susaki, E.A., and Ueda, H.R. (2016). Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137-157. https://doi.org/10.1016/j.chembiol.2015.11.009
  40. Susaki, E.A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T.M., Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., et al. (2014). Whole-brain imaging with single-cell resolution using chemical cocktails and computational Analysis. Cell 157, 726-739. https://doi.org/10.1016/j.cell.2014.03.042
  41. Susaki, E.A., Tainaka, K., Perrin, D., Yukinaga, H., Kuno, A., and Ueda, H.R. (2015). Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10, 1709-1727. https://doi.org/10.1038/nprot.2015.085
  42. Sylwestrak, E.L., Rajasethupathy, P., Wright, M.A., Jaffe, A., and Deisseroth, K. (2016). Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164, 792-804. https://doi.org/10.1016/j.cell.2016.01.038
  43. Tainaka, K., Kubota, S.I., Suyama, T.Q., Susaki, E.A., Perrin, D., Ukai-Tadenuma, M., Ukai, H., and Ueda, H.R. (2014). Wholebody imaging with single-cell resolution by tissue decolorization. Cell 159, 911-924. https://doi.org/10.1016/j.cell.2014.10.034
  44. Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., and Vale, R.D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646. https://doi.org/10.1016/j.cell.2014.09.039
  45. Tomer, R., Ye, L., Hsueh, B., and Deisseroth, K. (2014). Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682-1697. https://doi.org/10.1038/nprot.2014.123
  46. Tomer, R., Lovett-Barron, M., Kauvar, I., Andalman, A., Burns, V.M., Sankaran, S., Grosenick, L., Broxton, M., Yang, S., and Deisseroth, K. (2015). SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796-1806. https://doi.org/10.1016/j.cell.2015.11.061
  47. Tuchin, V.V. (2015). Tissue optics and photonics: light-tissue interaction. J. Biomed. Photonics Eng. 1, 98-134.
  48. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., and Ugurbil, K. (2013). The WU-Minn human connectome project: an overview. NeuroImage 80, 62-79. https://doi.org/10.1016/j.neuroimage.2013.05.041
  49. Warner, C.A., Biedrzycki, M.L., Jacobs, S.S., Wisser, R.J., Caplan, J.L., and Sherrier, D.J. (2014). An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166, 1684-1687. https://doi.org/10.1104/pp.114.244673
  50. Yang, B., Treweek, J.B., Kulkarni, R.P., Deverman, B.E., Chen, C.-K., Lubeck, E., Shah, S., Cai, L., and Gradinaru, V. (2014). Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945-958. https://doi.org/10.1016/j.cell.2014.07.017

Cited by

  1. Electrophoretic Tissue Clearing and Labeling Methods  for Volume Imaging of Whole Organs vol.46, pp.3, 2016, https://doi.org/10.9729/AM.2016.46.3.134
  2. Quantitative approaches for investigating the spatial context of gene expression vol.9, pp.2, 2017, https://doi.org/10.1002/wsbm.1369
  3. Application of Tissue Clearing Techniques to 3D Study of Infectious Disease Pathology in Fish vol.52, pp.2, 2017, https://doi.org/10.3147/jsfp.52.96
  4. Neuroscience in the third dimension: shedding new light on the brain with tissue clearing vol.10, pp.1, 2017, https://doi.org/10.1186/s13041-017-0314-y
  5. Synapsin-based approaches to brain plasticity in adult social insects vol.18, 2016, https://doi.org/10.1016/j.cois.2016.08.009
  6. Genetically encoded indicators of neuronal activity vol.19, pp.9, 2016, https://doi.org/10.1038/nn.4359
  7. Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines vol.65, pp.7, 2017, https://doi.org/10.1248/cpb.c17-00096
  8. Current status, pitfalls and future directions in the diagnosis and therapy of lymphatic malformation vol.11, pp.8, 2017, https://doi.org/10.1002/jbio.201700124
  9. Does pathology of small venules contribute to cerebral microinfarcts and dementia? vol.144, pp.5, 2017, https://doi.org/10.1111/jnc.14228
  10. Combination of analytical and experimental optical clearing of rodent specimen for detecting beta-carotene: phantom study vol.23, pp.09, 2018, https://doi.org/10.1117/1.JBO.23.9.095002
  11. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models vol.5, pp.2296-858X, 2018, https://doi.org/10.3389/fmed.2018.00179
  12. Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy vol.23, pp.05, 2018, https://doi.org/10.1117/1.JBO.23.5.055003
  13. Anticancer drug discovery using multicellular tumor spheroid models vol.14, pp.3, 2019, https://doi.org/10.1080/17460441.2019.1570129
  14. Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine pp.13501925, 2019, https://doi.org/10.1111/nmo.13560
  15. Genistein diet does not modify crypt morphology in the ob/ob mouse jejunum: a comparison of cryostat and clearing techniques vol.11, pp.None, 2018, https://doi.org/10.2147/dmso.s182501
  16. Tissue-Clearing Techniques Enable Three-Dimensional Visualization of Aerosolized Model Compound and Lung Structure at the Alveolar Scale vol.41, pp.1, 2016, https://doi.org/10.1248/bpb.b17-00348
  17. Immunolabeling of Cleared Human Pancreata Provides Insights into Three-Dimensional Pancreatic Anatomy and Pathology vol.188, pp.7, 2016, https://doi.org/10.1016/j.ajpath.2018.04.002
  18. Advances in CLARITY-based tissue clearing and imaging vol.16, pp.3, 2016, https://doi.org/10.3892/etm.2018.6374
  19. Copper signalling: causes and consequences vol.16, pp.1, 2016, https://doi.org/10.1186/s12964-018-0277-3
  20. Modified CLARITY Achieving Faster and Better Intact Mouse Brain Clearing and Immunostaining vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-46814-4
  21. Imaging the brain in 3D using a combination of CUBIC and immunofluorescence staining vol.10, pp.4, 2016, https://doi.org/10.1364/boe.10.002141
  22. The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance vol.8, pp.1, 2016, https://doi.org/10.3390/biology8010010
  23. Tissue Clearing and Its Application to Bone and Dental Tissues vol.98, pp.6, 2016, https://doi.org/10.1177/0022034519844510
  24. High‐resolution imaging of fluorescent whole mouse brains using stabilised organic media (sDISCO) vol.12, pp.8, 2016, https://doi.org/10.1002/jbio.201800368
  25. Advances in Ex Situ Tissue Optical Clearing vol.13, pp.8, 2016, https://doi.org/10.1002/lpor.201800292
  26. Transformation and species identification of CuO nanoparticles in plant cells (Nicotiana tabacum) vol.6, pp.9, 2016, https://doi.org/10.1039/c9en00781d
  27. Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids vol.116, pp.10, 2019, https://doi.org/10.1002/bit.27105
  28. Application of Hydrogen Peroxide-Melanin Bleaching and Fluorescent Nuclear Staining for Whole-Body Clearing and Imaging in Fish vol.54, pp.4, 2016, https://doi.org/10.3147/jsfp.54.101
  29. Brain-wide functional architecture remodeling by alcohol dependence and abstinence vol.117, pp.4, 2016, https://doi.org/10.1073/pnas.1909915117
  30. Clearing, immunofluorescence, and confocal microscopy for the three-dimensional imaging of murine testes and study of testis biology vol.209, pp.3, 2016, https://doi.org/10.1016/j.jsb.2020.107449
  31. Three-Dimensional Approaches in Histopathological Tissue Clearing System vol.52, pp.1, 2016, https://doi.org/10.15324/kjcls.2020.52.1.1
  32. Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovary† vol.102, pp.5, 2020, https://doi.org/10.1093/biolre/ioaa012
  33. Large-Scale 3D Optical Mapping and Quantitative Analysis of Nanoparticle Distribution in Tumor Vascular Microenvironment vol.31, pp.7, 2016, https://doi.org/10.1021/acs.bioconjchem.0c00263
  34. Quantitative assessment of optical clearing methods on formalin-fixed human lymphoid tissue vol.216, pp.11, 2020, https://doi.org/10.1016/j.prp.2020.153136
  35. A clearing protocol for Galleria mellonella larvae: Visualization of internalized fluorescent nanoparticles vol.60, pp.None, 2016, https://doi.org/10.1016/j.nbt.2020.08.002
  36. Influence of ClearT and ClearT2 Agitation Conditions in the Fluorescence Imaging of 3D Spheroids vol.22, pp.1, 2016, https://doi.org/10.3390/ijms22010266
  37. Current Status of Tissue Clearing and the Path Forward in Neuroscience vol.12, pp.1, 2016, https://doi.org/10.1021/acschemneuro.0c00563
  38. Tissue clearing technique: Recent progress and biomedical applications vol.238, pp.2, 2016, https://doi.org/10.1111/joa.13309
  39. Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes vol.70, pp.2, 2021, https://doi.org/10.2144/btn-2020-0063
  40. Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis vol.44, pp.2, 2016, https://doi.org/10.14348/molcells.2021.0006
  41. Three-dimensional architecture of nephrons in the normal and cystic kidney vol.99, pp.3, 2016, https://doi.org/10.1016/j.kint.2020.09.032
  42. A guidebook for DISCO tissue clearing vol.17, pp.3, 2016, https://doi.org/10.15252/msb.20209807
  43. Optical clearing reveals TNBS-induced morphological changes of VGLUT2-positive nerve fibers in mouse colorectum vol.320, pp.4, 2016, https://doi.org/10.1152/ajpgi.00363.2020
  44. Tutorial: practical considerations for tissue clearing and imaging vol.16, pp.6, 2021, https://doi.org/10.1038/s41596-021-00502-8
  45. A simple optical tissue clearing pipeline for 3D vasculature imaging of the mediastinal organs in mice vol.102, pp.4, 2016, https://doi.org/10.1111/iep.12399
  46. Tissue clearing and 3D imaging - putting immune cells into context vol.134, pp.15, 2016, https://doi.org/10.1242/jcs.258494
  47. Tissue optical clearing for 3D visualization of vascular networks: A review vol.141, pp.None, 2021, https://doi.org/10.1016/j.vph.2021.106905
  48. Silicon nitride: a potent solid-state bioceramic inactivator of ssRNA viruses vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-82608-3