DOI QR코드

DOI QR Code

Major genotype identification affecting economic traits in FABP4, SCD, FASN and SREBPs genes of Korean cattle

한우의 FABP4, SCD, FASN, SREBPs 유전자에서 경제형질에 영향을 미치는 우수 유전자형 선별

  • Received : 2016.07.18
  • Accepted : 2016.08.16
  • Published : 2016.12.31

Abstract

Kim and Lee (2015) identified a superior FABP4 gene that improves the grade and fatty acid of Korean cattle. This study selects a superior genotype by expanding genes that influence the economic traits of Korean cattle. Expanded genes are FABP4, SCD, FASN and SREBPs that are related to grade and fatty acid (Oh, 2014). We use the adjusted economic-trait values with environmental factors excluded. We also applied multifactor dimensionality reduction(MDR) method to data of the adjusted economic-trait values. As a result, we identified superior genes and genotypes which improved the grade and fatty acid of Korean cattle.

Kim과 Lee (2015)는 한우의 등급과 지방산을 향상시키는 우수한 FABP4 유전자를 선별하였다. 본 연구의 목적은 유전자를 확장하여 한우의 경제형질에 영향을 미치는 우수한 유전자형을 선별하는 것이다. 확장된 유전자는 한우의 등급과 지방산과 깊은 연관이 있다고 밝혀진 FABP4, SCD, FASN, SREBPs이다. 우리는 환경적인 요인을 제거하여 보정된 경제형질 값을 활용하여 보정된 경제형질 값에 다중인자차원축소 방법을 적용한다. 그 결과 한우의 등급, 지방산을 향상시키는 우수한 유전자와 유전자형을 선별했다.

Keywords

References

  1. Casas, E., White, S. N., Riley, D. G., Smith, T. P. L., Brenneman, R. A., Olson, T. A., Johnson, D. D., Coleman, S. W., Bennett, G. L., and Chase, C. C. (2005). Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle, Journal of Animal Science, 83, 13-19. https://doi.org/10.2527/2005.83113x
  2. Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman & Hall/CRC, New York.
  3. Kim, H. J. and Lee, J. Y. (2015). The effects of breeding environment adjustment in FABP4 gene identification of Korean cattle, The Korean Journal of Applied Statistics, 28, 1271-1280.
  4. Mandell, I. B., Buchanan-Smith, J. G., and Campbell, C. P. (1998). Effects of forage vs grain feeding on carcass characteristics, fatty acid composition, and beef quality in Limousin-cross steers when time on feed is controlled, Journal of Animal Science, 76, 2619-2630. https://doi.org/10.2527/1998.76102619x
  5. Matsuhashi, T., Maruyama, S., Uemoto, Y., Kobayashi, N., Mannen, H., Abe, T., Sakaguchi, S., and Kobayashi, E. (2011). Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese black cattle, Journal of Animal Science, 89, 12-22. https://doi.org/10.2527/jas.2010-3121
  6. Melton, S. L., Amiri, M., Davis, G. W., and Backus, W. R. (1982). Flavor and chemical characteristics of ground beef from grass-, forage-grain-and grain-finished steers, Journal of Animal Science, 55, 77-87. https://doi.org/10.2527/jas1982.55177x
  7. Oh, D. Y. (2014). Identification of the SNP (single nucleotide polymorphism) within candidate gene associated with fatty composition in Hanwoo (Ph. D. Thesis), Yeungnam University.
  8. Oh, D. Y., Lee, Y. S., La, B. M., Yeo, J. S., Chung, E. Y., Kim, Y. Y., and Lee, C. Y. (2011). Fatty acid composition of beef is associated with exonic nucleotide variants of the gene encoding FASN, Molecular Biology Reports, 39, 4083-4090.
  9. Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., and Moore, J. H. (2001). Multifactor dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer, The American Society of Human Genetics, 69, 138-147. https://doi.org/10.1086/321276
  10. Sturdivant, C. A., Lunt, D. K., Smith, G. C., and Smith, S. B. (1991). Fatty acid composition of subcutaneous and intramuscular adipose tissues and M. longissimus dorsi ofWagyu cattle, Meat Science, 32, 449-458.