DOI QR코드

DOI QR Code

Bioaccumulation, alterations of metallothionein, and antioxidant enzymes in the mullet Mugil cephalus exposed to hexavalent chromium

  • Min, Eun Young (Institute of Fisheries Sciences, Pukyong National University) ;
  • Ahn, Tae Young (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2016.05.23
  • Accepted : 2016.05.28
  • Published : 2016.06.30

Abstract

A laboratory experiment was conducted to determine hexavalent chromium ($Cr^{6+}$) accumulation in the mullet and investigate $Cr^{6+}$ toxicity using a panel of biomarkers including metallothioneins (MTs), glutathione (GSH), glutathione S-transferase (GST), and superoxide dismutases (SODs) for 4 weeks. $Cr^{6+}$ bioaccumulation in all tissues, except muscle, was consistently time- and dose-dependent. The accumulation of $Cr^{6+}$ for 4-week exposures was in the following order: $kidney{\approx}liver$ > $intestine{\approx}gill$ > spleen > muscle. Compared with the control, $Cr^{6+}$ bioaccumulation was increased in ${\geq}200{\mu}g\;L^{-1}$ groups (P < 0.05). An independent relation was observed between accumulation factors (AFs) and exposure concentration. But AFs increased with exposure time. In the liver and gill, GST and SOD differed from the control at a high $Cr^{6+}$ concentration at 2 and 4 weeks (P < 0.05). This study indicated that the gills were as sensitive as the liver to $Cr^{6+}$ toxicity. However, the latter appeared to influence largely on the organism's adaptive response to $Cr^{6+}$, since $Cr^{6+}$ may elevate GSH and MT levels by enhancing the hepatic uptake of metal in the mullet.

Keywords

References

  1. Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol. 2006;76(2):160-202. https://doi.org/10.1016/j.aquatox.2005.08.015
  2. Anosike EO, Uwakwe AA, Monanu MO, Ekeke GI. Studies on human erythrocytes glutathione-S transferase form HbAA, HbAS and hbSS subject. Biochem Biomed Acta. 1991;50:1051-5.
  3. Arillo A, Melodia F. Effect of hexavalent chromium on trout mitochondria. Toxicol Lett. 1998;44:71-6.
  4. Atli G, Canli M. Response of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environ Toxicol Pharmacol. 2008;25:33-8. https://doi.org/10.1016/j.etap.2007.08.007
  5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Campana O, Saraquete C, Blasco J. Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol Environ Safe. 2003;55:116-25. https://doi.org/10.1016/S0147-6513(02)00093-3
  7. Cinier CC, Petit-Ramel M, Faure R, Garin D, Bouvet Y. Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp Biochem Physiol. 1999;122C:345-52.
  8. Cogun HY, Yuzereroglu TA, Firat O, Gok G, Kargin F. Metal concentrations in fish species form the Northeast Mediterranean Sea. Environ Monit Assess. 2006;121:431-8. https://doi.org/10.1007/s10661-005-9142-0
  9. Demirak A, Yilmaz F, Tuna AL, Ozdemir N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere. 2006;63:1451-8. https://doi.org/10.1016/j.chemosphere.2005.09.033
  10. DeForest DK, Brix KV, Adams WJ. Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol. 2007;84:236-246. https://doi.org/10.1016/j.aquatox.2007.02.022
  11. Elia AC, Dorr AJM, Mantilacci L, Taticchi MI, Galarini R. Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert B, Friese K, editors. Trace elements-their distribution and effects in the environment: trace metals in the environment. Vol. 4. Amsterdam, Netherlands: Elsevier Science; 2000. p. 411-21.
  12. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.
  13. Holwerda DA. Cadmium kinetics in freshwater clams. V. Cadmium-copper interaction in metal accumulation by Anodonta cyngnea and characterization of metal binding protein. Arch Environ Contam Toxicol. 1991;21:432-7. https://doi.org/10.1007/BF01060367
  14. Kendall MW. Acute effects of methyl mercury toxicity in channel catfish (Ictalurus punctatus) liver. Bull Environ Contam Toxicol. 1977;18(2):143-51. https://doi.org/10.1007/BF01686060
  15. Kim JH, Kang JC. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to differnet waterborne selenium concentrations. Chemosphere. 2015;135:46-52. https://doi.org/10.1016/j.chemosphere.2015.03.062
  16. Kim SG, Jee JH, Kang JC. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environ Poll. 2004;127:117-23. https://doi.org/10.1016/S0269-7491(03)00254-9
  17. Klein D, Michaelsen S, Sato S, Luz A, Stampfl A, Summer KH. Binding of Cu to metallothionein in tissues of the LEC rat with inherited abnormal copper accumulation. Arch Toxicol. 1997;71:340-3. https://doi.org/10.1007/s002040050396
  18. Kraal MH, Kraak MHS, De Groot CJ, Davids C. Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicol Environ Saf. 1995;31:179-83. https://doi.org/10.1006/eesa.1995.1060
  19. Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, et al. Chromium effects on free radical processes in goldfish tissues: comparison of Cr(III) and Cr(VI) exposure on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol. 2010;152(C):360-70.
  20. Lange A, Ausseil O, Segener H. Alterations of tissue glutathione levels and metallothionein mRNA rainbow trout during single and combined exposure to cadmium and zinc. Comp Biochem Physiol. 2002;131C:231-43.
  21. Linde AR, Klein D, Summer KH. Phenomenon of hepatic overload of copper in Mugil cephalus: role of metallothionein and patterns of copper cellular distribution. Basic Clinical Pharma Toxicol. 2005;97:230-5. https://doi.org/10.1111/j.1742-7843.2005.pto_56.x
  22. Lushchak OV, Kubrak OI, Nykorak MZ, Storey KB, Lushchak VI. The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione. Aquat Toxicol. 2008;87:108-14. https://doi.org/10.1016/j.aquatox.2008.01.007
  23. Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI. Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol. 2009;92:45-52.
  24. Lushchak OV, Kubrak OI, Torous IM, Nazarchuk TY, Storey KB, Lushchak VI. Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere. 2009;75:56-62. https://doi.org/10.1016/j.chemosphere.2008.11.052
  25. Malik N, Biswas AK, Qureshi TA, Borana K, Virha R. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess. 2010;160:267-76. https://doi.org/10.1007/s10661-008-0693-8
  26. Palaniappan PR, Karthikeyan S. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci. 2009;21:229-36. https://doi.org/10.1016/S1001-0742(08)62256-1
  27. Paris-Palacios S, Biagianti-Risbourg S, Vernt G. Biochemical and (ultra) structural hepatic perturbations of Brachydanio reio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol. 2000;50:109-24. https://doi.org/10.1016/S0166-445X(99)00090-9
  28. Potter DW, Tran TB. Apparent rates of glutathione turnover in rat tissues. Toxicol Appl Pharmacol. 1993;120:186-92. https://doi.org/10.1006/taap.1993.1102
  29. Roberts AP, Oris JT. Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol. 2004;138C:221-8.
  30. Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radic Biol Med. 1993;14:325-37. https://doi.org/10.1016/0891-5849(93)90029-T
  31. Schlenk D, Rice CD. Effect of zinc and cadmium treatment on hydrogen peroxide-induced mortality and expression of glutathione and metallothionein in teleost hepatoma cell line. Aquat Toxicol. 1998;43:121-9. https://doi.org/10.1016/S0166-445X(98)00050-2
  32. Sengupta T, Chattopadhyay D, Ghosh N, Das M, Chatterjee GC. Effect of chromium administration on glutathione cycle of rat intestinal epithelial cells. Indian J Exp Biol. 1990;28:1132-5.
  33. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916-21. https://doi.org/10.1016/S0891-5849(99)00177-X
  34. Sorensen EM. Cadmim. In: Metal poisoning in fish. Boca Raton: CRC Press; 1991. p. 175-234.
  35. Srivastava SK, Beutler E. Glutathione metabolism of the erythrocyte. Biochem J. 1970;119:353-7. https://doi.org/10.1042/bj1190353
  36. Thomas P, Wofford HW. Effects of metals and organic compounds on hepatic glutathione, cysteine, and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol Appl Pharmacol. 1984;76(1):172-82. https://doi.org/10.1016/0041-008X(84)90040-1
  37. Viarengo A, Nott JA. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp Biochem Physiol. 1993;104C:355-72.
  38. Wang S, Leonard SS, Ye J, Gao N, Wang N, Shi X. Role of reactive oxygen species and Cr(VI) in Ras-mediated signal transduction. Mol Cell Biochem. 2004;255:119-27. https://doi.org/10.1023/B:MCBI.0000007268.42733.53
  39. Yang HN, Chen HC. Uptake and elimination of cadmium by Japanese eel, Anguilla japonica, at various temperatures. Bull Environ Contam Toxicol. 1999;56:670-6.
  40. Zirong X, Shijun B. Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicol Environ Safe. 2007;67:89-94. https://doi.org/10.1016/j.ecoenv.2006.04.006

Cited by

  1. Bioaccumulation, trophodynamics and ecotoxicity of antimony in environmental freshwater food webs vol.47, pp.22, 2016, https://doi.org/10.1080/10643389.2017.1419790
  2. Responses of biomarkers in Atlantic salmon (Salmo salar) following exposure to environmentally relevant concentrations of complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd). Part II vol.27, pp.8, 2016, https://doi.org/10.1007/s10646-018-1960-2
  3. Seasonal assessment of some heavy metal pollution and Metallothionein gene expression in cultured Oreochromis niloticus vol.43, pp.1, 2019, https://doi.org/10.1186/s42269-019-0167-x
  4. The extent to which lipopolysaccharide modulates oxidative stress response in Mugil cephalus juveniles vol.51, pp.1, 2020, https://doi.org/10.1111/are.14309
  5. Coal mine effluent-induced metal bioaccumulation, biochemical, oxidative stress, metallothionein, and histopathological alterations in vital tissues of the catfish, Clarias batrachus vol.28, pp.20, 2021, https://doi.org/10.1007/s11356-021-12381-3
  6. Metabolite profiling, histological and oxidative stress responses in the grey mullet, Mugil cephalus exposed to the environmentally relevant concentrations of the heavy metal, Pb (NO3)2 vol.244, pp.None, 2016, https://doi.org/10.1016/j.cbpc.2021.109004