Browse > Article
http://dx.doi.org/10.1186/s41240-016-0020-1

Bioaccumulation, alterations of metallothionein, and antioxidant enzymes in the mullet Mugil cephalus exposed to hexavalent chromium  

Min, Eun Young (Institute of Fisheries Sciences, Pukyong National University)
Ahn, Tae Young (Department of Aquatic Life Medicine, Pukyong National University)
Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.19, no.4, 2016 , pp. 19.1-19.7 More about this Journal
Abstract
A laboratory experiment was conducted to determine hexavalent chromium ($Cr^{6+}$) accumulation in the mullet and investigate $Cr^{6+}$ toxicity using a panel of biomarkers including metallothioneins (MTs), glutathione (GSH), glutathione S-transferase (GST), and superoxide dismutases (SODs) for 4 weeks. $Cr^{6+}$ bioaccumulation in all tissues, except muscle, was consistently time- and dose-dependent. The accumulation of $Cr^{6+}$ for 4-week exposures was in the following order: $kidney{\approx}liver$ > $intestine{\approx}gill$ > spleen > muscle. Compared with the control, $Cr^{6+}$ bioaccumulation was increased in ${\geq}200{\mu}g\;L^{-1}$ groups (P < 0.05). An independent relation was observed between accumulation factors (AFs) and exposure concentration. But AFs increased with exposure time. In the liver and gill, GST and SOD differed from the control at a high $Cr^{6+}$ concentration at 2 and 4 weeks (P < 0.05). This study indicated that the gills were as sensitive as the liver to $Cr^{6+}$ toxicity. However, the latter appeared to influence largely on the organism's adaptive response to $Cr^{6+}$, since $Cr^{6+}$ may elevate GSH and MT levels by enhancing the hepatic uptake of metal in the mullet.
Keywords
Hexavalent chromium; Mullet; Bioaccumulation; Metallothionein; Antioxidant enzymes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thomas P, Wofford HW. Effects of metals and organic compounds on hepatic glutathione, cysteine, and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicol Appl Pharmacol. 1984;76(1):172-82.   DOI
2 Viarengo A, Nott JA. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp Biochem Physiol. 1993;104C:355-72.
3 Wang S, Leonard SS, Ye J, Gao N, Wang N, Shi X. Role of reactive oxygen species and Cr(VI) in Ras-mediated signal transduction. Mol Cell Biochem. 2004;255:119-27.   DOI
4 Yang HN, Chen HC. Uptake and elimination of cadmium by Japanese eel, Anguilla japonica, at various temperatures. Bull Environ Contam Toxicol. 1999;56:670-6.
5 Zirong X, Shijun B. Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicol Environ Safe. 2007;67:89-94.   DOI
6 Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol. 2006;76(2):160-202.   DOI
7 Anosike EO, Uwakwe AA, Monanu MO, Ekeke GI. Studies on human erythrocytes glutathione-S transferase form HbAA, HbAS and hbSS subject. Biochem Biomed Acta. 1991;50:1051-5.
8 Arillo A, Melodia F. Effect of hexavalent chromium on trout mitochondria. Toxicol Lett. 1998;44:71-6.
9 Atli G, Canli M. Response of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environ Toxicol Pharmacol. 2008;25:33-8.   DOI
10 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.   DOI
11 Campana O, Saraquete C, Blasco J. Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus. Ecotoxicol Environ Safe. 2003;55:116-25.   DOI
12 Cinier CC, Petit-Ramel M, Faure R, Garin D, Bouvet Y. Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp Biochem Physiol. 1999;122C:345-52.
13 Elia AC, Dorr AJM, Mantilacci L, Taticchi MI, Galarini R. Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert B, Friese K, editors. Trace elements-their distribution and effects in the environment: trace metals in the environment. Vol. 4. Amsterdam, Netherlands: Elsevier Science; 2000. p. 411-21.
14 Cogun HY, Yuzereroglu TA, Firat O, Gok G, Kargin F. Metal concentrations in fish species form the Northeast Mediterranean Sea. Environ Monit Assess. 2006;121:431-8.   DOI
15 Demirak A, Yilmaz F, Tuna AL, Ozdemir N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere. 2006;63:1451-8.   DOI
16 DeForest DK, Brix KV, Adams WJ. Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol. 2007;84:236-246.   DOI
17 Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.
18 Kim JH, Kang JC. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to differnet waterborne selenium concentrations. Chemosphere. 2015;135:46-52.   DOI
19 Holwerda DA. Cadmium kinetics in freshwater clams. V. Cadmium-copper interaction in metal accumulation by Anodonta cyngnea and characterization of metal binding protein. Arch Environ Contam Toxicol. 1991;21:432-7.   DOI
20 Kendall MW. Acute effects of methyl mercury toxicity in channel catfish (Ictalurus punctatus) liver. Bull Environ Contam Toxicol. 1977;18(2):143-51.   DOI
21 Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, et al. Chromium effects on free radical processes in goldfish tissues: comparison of Cr(III) and Cr(VI) exposure on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol. 2010;152(C):360-70.
22 Kim SG, Jee JH, Kang JC. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environ Poll. 2004;127:117-23.   DOI
23 Klein D, Michaelsen S, Sato S, Luz A, Stampfl A, Summer KH. Binding of Cu to metallothionein in tissues of the LEC rat with inherited abnormal copper accumulation. Arch Toxicol. 1997;71:340-3.   DOI
24 Kraal MH, Kraak MHS, De Groot CJ, Davids C. Uptake and tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio). Ecotoxicol Environ Saf. 1995;31:179-83.   DOI
25 Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI. Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol. 2009;92:45-52.
26 Lange A, Ausseil O, Segener H. Alterations of tissue glutathione levels and metallothionein mRNA rainbow trout during single and combined exposure to cadmium and zinc. Comp Biochem Physiol. 2002;131C:231-43.
27 Linde AR, Klein D, Summer KH. Phenomenon of hepatic overload of copper in Mugil cephalus: role of metallothionein and patterns of copper cellular distribution. Basic Clinical Pharma Toxicol. 2005;97:230-5.   DOI
28 Lushchak OV, Kubrak OI, Nykorak MZ, Storey KB, Lushchak VI. The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione. Aquat Toxicol. 2008;87:108-14.   DOI
29 Lushchak OV, Kubrak OI, Torous IM, Nazarchuk TY, Storey KB, Lushchak VI. Trivalent chromium induces oxidative stress in goldfish brain. Chemosphere. 2009;75:56-62.   DOI
30 Malik N, Biswas AK, Qureshi TA, Borana K, Virha R. Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess. 2010;160:267-76.   DOI
31 Palaniappan PR, Karthikeyan S. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci. 2009;21:229-36.   DOI
32 Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radic Biol Med. 1993;14:325-37.   DOI
33 Paris-Palacios S, Biagianti-Risbourg S, Vernt G. Biochemical and (ultra) structural hepatic perturbations of Brachydanio reio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate. Aquat Toxicol. 2000;50:109-24.   DOI
34 Potter DW, Tran TB. Apparent rates of glutathione turnover in rat tissues. Toxicol Appl Pharmacol. 1993;120:186-92.   DOI
35 Roberts AP, Oris JT. Multiple biomarker response in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol. 2004;138C:221-8.
36 Schlenk D, Rice CD. Effect of zinc and cadmium treatment on hydrogen peroxide-induced mortality and expression of glutathione and metallothionein in teleost hepatoma cell line. Aquat Toxicol. 1998;43:121-9.   DOI
37 Sengupta T, Chattopadhyay D, Ghosh N, Das M, Chatterjee GC. Effect of chromium administration on glutathione cycle of rat intestinal epithelial cells. Indian J Exp Biol. 1990;28:1132-5.
38 Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916-21.   DOI
39 Sorensen EM. Cadmim. In: Metal poisoning in fish. Boca Raton: CRC Press; 1991. p. 175-234.
40 Srivastava SK, Beutler E. Glutathione metabolism of the erythrocyte. Biochem J. 1970;119:353-7.   DOI