• Title/Summary/Keyword: specific surface area

Search Result 1,580, Processing Time 0.034 seconds

Changes of physico-chemical properties of the activated sludges with anaerobic storage time (혐기화 시간에 따른 활성슬러지의 물리ㆍ화학적 특성변화)

  • 이창한;나영수;김도한;이송우;송승구
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.339-346
    • /
    • 2002
  • Physico-chemical properties of the activated sludges(Suyoung and Changlim treatment plant), such as SVI(sludge volume index), absorbance, specific surface area, and specific resistance using Buchener funnel test were investigated with changing anaerobic storage time. This experimental condition was found that it was possible to estimate a linear relationship between their parameters such as specific surface area specific resistance, and sludge volume index(SVI). The specific surface area and the specific resistance to filtration of the activated sludges of Suyoung and Changlim treatment plant were found as 123.6~136.6$m^2$/gDS and 41.5~44.9$m^2$/gDS(dry solid), and 1.09$\times$10$^{14}$ ~5.48$\times$10$_{14}$ m/kg and 1.05$\times$10$^{14}$ ~2.48$\times$10$^{14}$ m/kg, respectively. The results gave a good linear relationship between the specific surface area and the specific resistance, r=2.25$\times$10$^{12}$ s-8.10$\times$10$^{13}$ ($R^2$=0.8885) at Suyoung treatment plant and r=1.26$\times$10$^{13}$ s-4.75$\times$10$^{14}$ ($R^2$=0.8756) at Changlim treatment plant.

Influence of Growth Rate on Biosorption of Heavy Metals by Nocardia amarae

  • Kim, Dong Wook;Daniel K. Cha;Hyung-Joon Seo;Jong Bok Bak
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.878-881
    • /
    • 2002
  • The goal of the current research was to assess the influence of the growth rate of Nocardia amarae on its overall metal binding capacity. Batch sorption isotherms for cadmium (Cd), copper (Cu), and nickel (Ni) showed that Nocardia cells harvested from chemostat cultures at a dilution rate of $0.33d^-1$ had a significantly higher metal sorption capacity than cells grown at 0.5 and $1d^-1$. The cell surface area estimated using a dye technique indicated that pure N. amarae cells grown at a lower growth rate had a significantly more specific surface area than cells harvested from a higher growth rate operation. Accordingly, this difference in the specific surface area seemed to indicate that the higher metal sorption capacity of the slowly growing Nocardia cells was due to their higher specific surface area.

Effect of the Number of Passes through Grinder on the Pore Characteristics of Nanofibrillated Cellulose Mat (그라인딩 처리 횟수에 따른 나노피브릴화 셀룰로오스 매트의 공극 특성)

  • Sim, Kyujeong;Ryu, Jaeho;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the effect of the number of passes through agrinder on the pore characteristics of nanofibrillated cellulose (NFC) mat. The beaten pulp suspension was used to make NFC suspension using a grinder. To evaluate the pore characteristics of a NFC mat, the surface morphology of the dried NFC mat was observed with FE-SEM and the specific surface area was analyzed with BET nitrogen gas adsorption. The structure of NFC mat was changed with the different number of passes and drying methods. The specific surface area of NFC mat increased with the increase in the number of passes. The 20-passed NFC mat had 20 times larger specific surface area ($141m^2/g$) compared to the 0-passed NFC mat. The specific surface area was strongly correlated with the average pore size in NFC mat. The average pore diameter in NFC mat was calculated from the gas sorption isotherms using BJH model. The value was 13 - 15 nm, indicating that the NFC mat had mesoporous structure.

Synthesis of Mesoporous Titanium Dioxide Nanoparticles and Their Application into Dye Sensitized Solar Cells (다공성 산화타이타늄 나노입자 합성과 염료감응형 태양전지 응용)

  • Kim, Whidong;Ahn, Jiyoung;Kim, Soohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • In order to improve the overall power conversion efficiency in dye-sensitized solar cells (DSSCs), it is very important to secure the sufficient surface area of photocatalytic nanoparticles layer for absorbing dye molecules. It is because increasing the amount of dye absorbed generally results in increasing the amount of light harvesting. In this work, we proposed a new method for increasing the specific surface area of photocatalytic titanium oxide ($TiO_2$) nanoparticles by using an inorganic templating method. Salt-$TiO_2$ composite nanoparticles were synthesized in this approach by spray pyrolyzing both the titanium butoxide and sodium chloride solution. After aqueous removal of salt from salt-$TiO_2$ composite nanoparticles, mesoporous $TiO_2$ nanoparticles with pore size of 2~50 nm were formed and then the specific surface area of resulting porous $TiO_2$ nanoparticle was measured by Brunauer-Emmett-Teller (BET) method. Generally, commercially available P-25 with the average primary size of ~25 nm $TiO_2$ nanoparticles was used as an active layer for dye-sensitized solarcells, and the specific surface area of P-25 was found to be ~50 $m^2/g$. On the other hand, the specific surface area of mesoporous $TiO_2$ nanoparticles prepared in this approach was found to be ~286 $m^2/g$, which is 5 times higher than that of P-25. The increased specific surface area of $TiO_2$ nanoparticles will absorb relatively more dye molecules, which can increase the short curcuit current (Jsc) in DSSCs. The influence of nanoporous structures of $TiO_2$ on the performance of DSSCs will be discussed in terms of the amount of dye molecules absorbed, the fill factor, the short circuit current, and the power conversion efficiency.

  • PDF

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Preparation of Porous Glasses by the Phase-separation of the Silicate Glass Containing $TiO_2$ ($TiO_2$를 함유한 규산염 유리의 상분리를 이용한 다공질 유리의 제조)

  • 김병훈;최석진;박태철
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Microporous glasses in the system TiO2-SiO2-Al2O3-B2O3-CaO-Na2O were prepared by the phase-separation technique. Morphology and distribution of pore and specific surface area of glasses heated and leached out at various conditions were investigated by SEM and Porosimeter. Crystallization of glasses heated above transition temperature was also inspected by X-ray diffraction method. When the heating temperature and time increased, the pore size and volume increased, but the specific surface area decreased above the critical temperature. The phase-separation, specific surface area and pore size showed more sensitive change on the variation of heating temperature than of heating time. The specific surface area and micropore volume of porous glasses prepared in this study were about 120-330$m^2$/g and 0.001-0.01cc/g, respectively. Mean pore size of porous glasses were about 20-90$\AA$. Anatase phases was deposited when the parent glass was heat-treated at 75$0^{\circ}C$ for 6hrs.

  • PDF

Adsorption Characteristics of Endo Ⅱ and Exo Ⅱ Purified from Trichoderma viride on Microcrystalline Celluloses with Different Surface Area

  • 김동원;정영규;장영훈;이재국
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.498-503
    • /
    • 1995
  • The adsorption behaviors of two major components purified, endo Ⅱ and exo Ⅱ, from Trichoderma viride were investigated using microcrystalline cellulose with different specific surface area as substrates. Adsorption was found to apparently obey the Langmuir isotherm and the thermodynamic parameters, ΔH, ΔS, and ΔG, were calculated from adsorption equilibrium constant,K. The adsorption process was found to be endothermic and an adsorption entropy-controlled reaction. The amount of adsorption of cellulase components increased with specific surface area and decreased with temperature and varied with a change in composition of the cellulase components. The maximum synergistic degradation occurred at the specific weight ratio of the cellulase components at which the maximum affinity of cellulase components obtains. The adsorption entropy and enthalpy for respective enzyme system increased with specific surface area increase. The adsorption entropy was shown to have a larger value with enzyme mixture.

The electrochemical characteristics of EDLC with various activated carbons (다양한 활성탄 종류에 따른 EDLC 전기화학적 특성)

  • Yoon, Hong-Jin;Lee, Chang-Ho;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.225-231
    • /
    • 2011
  • The electrochemical characteristics of electric double layer capacitor(EDLC) were investigated using various carbon materials. The physical properties such as specific surface area and mean pore size of activated carbon were analyzed by BET. The results of the activated carbon used for electrode material showed that the specific surface areas varied from 600 to 1500 $m^2$/g and mean pore sizes from 1.74 to 2.88 nm. A maximum specific capacitance of 0.30 F/$cm^2$ was obtained for the activated carbon with the highest specific surface area and ionic conductivity. Also, it was found that the electrochemical results of the cyclic charge-discharge tests were stable.

Water Vapor Retention and Specific Surface Area of Fractionated Natural Zeolite (천연(天然) Zeolite의 입경별(粒徑別) 수증기(水蒸氣) 흡착량(吸着量)과 비표면적(比表面積) 계산상(計算上)의 문제점(問題點))

  • Kang, Shin-Jyung;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.31 no.1
    • /
    • pp.86-91
    • /
    • 1988
  • Natural zeolite rock of which dominent clay minerals were mordenite and clinoptilolite was collected from Wolsung, Kyungpook province. It was pulverized and sieved into four fractions of $1{\sim}0.5,\;0,5{\sim}0.25,\;0.25{\sim}0.1,$ and<0.1mm. The specific surface areas of its four fractions were determined by $H_2O$ and EGME. The specific surface area of zeolite was slightly affected according to species of measuring material, but was scarcely affected by partical size, nor increased of pulverizing. The surface area of zeolite was calculated from geometric structure of mordenite and it was compared with the specific surface area calculated from maximum numbers of $H_2O$ which could be adsorbed on mordenite. On the basis of that result, the specific area measured from zeolite was estimated to be a part of surface area calculated from it. Accordingly, it was suggested that a new method should be developed for the determination of an exact surface area of zeolite.

  • PDF