DOI QR코드

DOI QR Code

PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성

Stability of W/O Nanoemulsions with Low Viscosity Prepared by PIC Method

  • 조완구 (전주대학교 의과학대학 바이오기능성식품학과)
  • 투고 : 2016.04.22
  • 심사 : 2016.06.09
  • 발행 : 2016.06.30

초록

본 연구에서는 정제수/Span 80-Nikkol BL 25/오일계의 water-in-oil (W/O) 나노에멀젼을 높은 온도에서 PIC 유화로 제조하였다. 이 방법은 본 시스템에서 미세하게 분산된 저점도의 W/O 나노에멀젼의 형성을 가능케 하였다. 그러나 실온에서 PIC 방법으로 제조된 에멀젼은 나노에멀젼보다는 마크로에멀젼이 제조되었다. 유화온도가 $30^{\circ}C$에서 $80^{\circ}C$로 증가하면 온도에 따른 계면장력의 큰 변화의 결과로 입자 크기는 $2{\mu}m$에서 100 nm 정도로 감소하였다. $80^{\circ}C$에서 제조된 나노에멀젼의 입자 크기는 50 ~ 200 nm 범위에 있었고 내상의 분율은 15 wt%까지 가능하였다. 또한 혼합 유화제의 최적 HLB는 7.0 부근에서 가장 안정한 나노에멀젼이 형성되었다. 제조된 나노에멀젼은 1개월 이상 실온에서 안정하였다. 본 연구 결과는 저점도의 W/O 나노에멀젼의 형성 최적화에 중요한 정보를 제공할 수 있다. 이 결과는 W/O 나노에멀젼의 저점도로 인한 부드러운 사용감 등으로 화장품 제형으로 유용하게 이용될 것으로 생각된다.

In this study, water-in-oil (W/O) nanoemulsions of water/Span 80-Nikkol BL 25/oil system were prepared by the PIC method at elevated temperature. This method allows the formation of finely dispersed W/O nanoemulsions with low viscosity in this system. However, macroemulsions rather than nanoemulsions were prepared by PIC method at room temperature. As a result of the significant change of interfacial tension with temperature, the emulsion droplet size decreases from $2{\mu}m$ to 100 nm with the increase in temperature from $30^{\circ}C$ to $80^{\circ}C$. The droplet size of nanoemulsions prepared at $80^{\circ}C$ was in the range of 50 ~ 200 nm and the internal phase content could reach as high as 15 wt%. The most stable nanoemulsion was formed in the vicinity of 7.0 of optimum HLB of the emulsifier mixture. The obtained nanoemulsions were stable without obvious change in droplet size in one month. This study provides valuable information for optimizing the formation of W/O nanoemulsions with low viscosity. These results suggest that W/O nanoemulsions of low viscosity could be useful for cosmetics with soft feeling.

키워드

참고문헌

  1. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr. Opin. Colloid Inter. Sci., 10(3-4), 102 (2005). https://doi.org/10.1016/j.cocis.2005.06.004
  2. C. Solans, I. Sole, A. Fernandez-Arteaga, J. Nolla, N. Azemar, J. M. Gutierrez, A. Maestro, C. Gonzalez, and C. M. Pey, Surfactant science series, Ed. Hidalgo-Alvarez Roque, 146, 457, Taylor and Francis Group (2010).
  3. J. M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C. M. Pey, and J. Nolla, Nano-emulsions: new applications and optimization of their preparation, Curr. Opin. Colloid Interf. Sci., 13(4), 245 (2008). https://doi.org/10.1016/j.cocis.2008.01.005
  4. M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci., 27(4), 689 (2002). https://doi.org/10.1016/S0079-6700(01)00051-X
  5. J. M. Asua, Miniemulsion polymerization, Prog. Polym. Sci., 27(7), 1283 (2002). https://doi.org/10.1016/S0079-6700(02)00010-2
  6. T. Delmas, H. Piraux, A. C. Couffin, I. Texier, F. Vinet, P. Poulin, M. E. Cates, and J. Bibette, How to prepare and stabilize very small nanoemulsions, Langmuir, 27(5), 1683 (2011). https://doi.org/10.1021/la104221q
  7. F. Ganachaud and J. L. Katz, Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem. Phys. Chem., 6(2), 209 (2005). https://doi.org/10.1002/cphc.200400527
  8. A. Forgiarini, J. Esquena, C. Gonzalez, C. Solans, Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, 17(7), 2076 (2001). https://doi.org/10.1021/la001362n
  9. W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interf. Sci., 303(2), 57 (2006).
  10. O. Sonneville-Aubrun, D. Babayan, D. Bordeaux, P. Lindner, G. Rata, and B. Cabane, Phase transition pathways for the production of 100 nm oil-in-water emulsions, Phys. Chem. Chem. Phys., 11(1), 101 (2009). https://doi.org/10.1039/B813502A
  11. D. Morales, J. M. Gutierrez, M. J. Garcia-Celma, and C. Solans, A study of the relation between bicontinuous microemulsions and oil/water nanoemulsion formation, Langmuir, 19(18), 7196 (2003). https://doi.org/10.1021/la0300737
  12. P. Izquierdo, J. Esquena, T. F. Tadros, J. C. Dederen, J. Feng, M. J. Garcia-Celma, N. Azemar, and C. Solans, Phase behavior and nano-emulsion formation by the phase inversion temperature method, Langmuir, 20(16), 6594 (2004). https://doi.org/10.1021/la049566h
  13. E. H. Kim and W. G. Cho, Nano-emulsion formed with phospholipid-nonionic surfactant mixtures and its stability, J. Soc. Cosmet. Sci. Kor., 40(3), 221 (2014).
  14. N. Uson, M. J. Garcia, and C. Solans, Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method, Colloids Surf. A, 250(1), 415 (2004). https://doi.org/10.1016/j.colsurfa.2004.03.039
  15. H. Pan, L. Yu, J. Xu, and D. Sun, Preparation of highly stable concentrated W/O nanoemulsions by PIC method at elevated temperature, Colloids Surf. A, 447, 97 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.063
  16. E. H. Kim and W. G. Cho, Candelilla wax nanoemulsions prepared by phase inversion composition (PIC) method, J. Kor. Oil Chem. Soc., 31(2), 203 (2014). https://doi.org/10.12925/jkocs.2014.31.2.203
  17. S. Setya, S. Talegaonkar, and B. K. Razdan, Nanoemulsions: formulation methods and stability aspects, World J. Pharm. Pharm. Sci., 3(2), 2214 (2014).
  18. E. H. Kim and W. G. Cho, Nanoemulsions containing vitamin E acetate prepared by PIC (phase inversion composition) methods: factors affecting droplets sizes, J. Kor. Oil Chem. Soc., 30(4), 602 (2013). https://doi.org/10.12925/jkocs.2013.30.4.602
  19. E. H. Kim and W. G. Cho, Stable liquid paraffin-in-water nanoemulsions prepared by phase inversion composition method, J. Soc. Cosmet. Sci. Kor., 40(2), 133 (2014).
  20. W. G. Cho, Application of stable o/w nanoemulsions with skin depigmenting agent for integration type of cosmetics, J. of Digital Convergence, 13(4), 417 (2015).