References
- Amaro HM, Macedo ÂC, Malcata FX. 2012. Microalgae: an alternative as sustainable source of biofuels? Energy 44: 158-166. https://doi.org/10.1016/j.energy.2012.05.006
- Bhattacharjee M, Siemann E. 2015. Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors. Algae 30: 67-79. https://doi.org/10.4490/algae.2015.30.1.067
- Buckwalter P, Embaye T, Gormly S, Trent JD. 2013. Dewatering microalgae by forward osmosis. Desalination 312: 19-22. https://doi.org/10.1016/j.desal.2012.12.015
- Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
- Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, et al. 2012. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int. J. Chem. Eng. 2012: 9. https://doi.org/10.1155/2012/920608
- Durmaz Y, Donato M, Monteiro M, Gouveia L, Nunes M, Pereira TG, et al. 2009. Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquac. Int. 17: 391-399. https://doi.org/10.1007/s10499-008-9211-9
- Feng P, Deng Z, Hu Z, Fan L. 2011. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour. Technol. 102: 10577-10584. https://doi.org/10.1016/j.biortech.2011.08.109
- Grima EM, Fernández FGA, Camacho FG, Chisti Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol. 70: 231-247. https://doi.org/10.1016/S0168-1656(99)00078-4
- Iancu P, Pleşu V, Velea S. 2012. Flue gas CO2 capture by microalgae in photobioreactor: a sustainable technology. Chem. Eng. Trans. 29: 799-804.
- Jiang Y, Chen F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodinium cohnii. J. Am. Oil Chem. Soc. 77: 613-617. https://doi.org/10.1007/s11746-000-0099-0
- Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101: 1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
- Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, et al. 2015. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. Biotechnol. 25: 109-118. https://doi.org/10.4014/jmb.1409.09019
- Kim BH, Kang Z, Ramanan R, Choi JE, Cho DH, Oh HM, et al. 2014. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater. J. Microbiol. Biotechnol. 24: 1123-1132. https://doi.org/10.4014/jmb.1312.12057
- Kim ZH, Lee HS, Lee CG. 2009. Red and blue photons can enhance the production of astaxanthin from Haematococcus pluvialis. Algae 24: 121-127. https://doi.org/10.4490/ALGAE.2009.24.2.121
- Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
- Lee SH, Ahn CY, Jo BH, Lee SA, Park JY, An KG, et al. 2013. Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. J. Microbiol. Biotechnol. 23: 92-98. https://doi.org/10.4014/jmb.1210.10033
- Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, et al. 2014. Higher biomass productivity of microalgae in an attached growth system, using wast water. J. Microbiol. Biotechnol. 24: 1566-1573. https://doi.org/10.4014/jmb.1406.06057
- Lee YK, Hing HK. 1989. Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl. Microbiol. Biotechnol. 31: 298-301. https://doi.org/10.1007/BF00258413
- Lin Q, Lin J. 2011. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour. Technol. 102: 1615-1621. https://doi.org/10.1016/j.biortech.2010.09.008
- Ras M, Steyer JP, Bernard O. 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Rev. Environ. Sci. Biotechnol. 12: 153-163. https://doi.org/10.1007/s11157-013-9310-6
- Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
- Teoh ML, Chu WL, Marchant H, Phang SM. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16: 421-430. https://doi.org/10.1007/s10811-004-5502-3
- Tran HL, Kwon JS, Kim ZH, Oh Y, Lee CG. 2010. Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572. Biotechnol. Bioprocess Eng. 15: 277-284. https://doi.org/10.1007/s12257-009-0127-7
- Trent J, Wiley P, Tozzi S, McKuin B, Reinsch S. 2012. Research spotlight: The future of biofuels: is it in the bag? Biofuels 3: 521-524. https://doi.org/10.4155/bfs.12.53
- Wagenen JV, Miller TW, Hobbs S, Hook P, Crowe B, Huesemann M. 2012. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 5: 731-740. https://doi.org/10.3390/en5030731
- Wang J, Sommerfeld MR, Lu C, Hu Q. 2013. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28: 193-202. https://doi.org/10.4490/algae.2013.28.2.193
- Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. 2011. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour. Technol. 102: 159-165. https://doi.org/10.1016/j.biortech.2010.07.017
- Zeebe RE, Wolf-Gladrow D. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes, pp. 4-11. Elsevier, Amsterdam, The Netherlands.
- Zheng Y, Yuan C, Liu J, Hu G, Li F. 2014. Lipid production by a CO2-tolerant green microalga, Chlorella sp. MRA-1. J. Microbiol. Biotechnol. 24: 683-689. https://doi.org/10.4014/jmb.1308.08050
- Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM. 2014. Microalgal biofuels: flexible bioenergies for sustainable development. Renew. Sust. Energ. Rev. 30: 1035-1046. https://doi.org/10.1016/j.rser.2013.11.003
Cited by
- Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters vol.22, pp.4, 2016, https://doi.org/10.1007/s12257-017-0200-6
- 부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상 vol.9, pp.1, 2016, https://doi.org/10.15433/ksmb.2017.9.1.014
- Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp. vol.28, pp.2, 2016, https://doi.org/10.4014/jmb.1702.02064
- Development of Carbon-Based Solid Acid Catalysts Using a Lipid-Extracted Alga, Dunaliella tertiolecta, for Esterification vol.28, pp.5, 2016, https://doi.org/10.4014/jmb.1712.12004
- Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium vol.30, pp.5, 2016, https://doi.org/10.1007/s10811-018-1388-3
- The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products vol.17, pp.None, 2018, https://doi.org/10.1186/s12934-018-0879-x
- Pelagibaca bermudensis promotes biofuel competence of Tetraselmis striata in a broad range of abiotic stressors: dynamics of quorum-sensing precursors and strategic improvement in lipid productivit vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1097-9
- 미세조류 배양을 이용한 부영양호 내 수질 개선 기술 개발 vol.10, pp.2, 2018, https://doi.org/10.15433/ksmb.2018.10.2.091
- Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives vol.41, pp.4, 2016, https://doi.org/10.4217/opr.2019.41.4.289
- Enhancing Microalgal Biomass Productivity in Floating Photobioreactors with Semi-Permeable Membranes Grafted with 4-Hydroxyphenethyl Bromide vol.28, pp.2, 2016, https://doi.org/10.1007/s13233-020-8023-2
- Development of porous fabric‐hydrogel composite membranes with enhanced ion permeability for microalgal cultivation in the ocean vol.137, pp.5, 2016, https://doi.org/10.1002/app.48324
- 초기 육계 사료내 토착미세조류(Parachlorella sp.) 첨가에 따른 성장 및 면역반응 변화 vol.47, pp.1, 2020, https://doi.org/10.5536/kjps.2020.47.1.49
- The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production vol.10, pp.10, 2016, https://doi.org/10.3390/app10103601
- 식품에 이용되는 미세조류와 이를 이용한 식품 연구개발 동향 및 전망 vol.36, pp.1, 2016, https://doi.org/10.7318/kjfc/2021.36.1.66
- Year-Round Cultivation of Tetraselmis sp. for Essential Lipid Production in a Semi-Open Raceway System vol.19, pp.6, 2021, https://doi.org/10.3390/md19060314