DOI QR코드

DOI QR Code

Ethylene Glycol과 Diethylene Glycol의 자연발화 특성과 활성화에너지에 관한 연구

A Study on Characteristics of Auto Ignition and Activation Energy of Ethylene Glycol and Diethylene Glycol

  • 김정훈 (부경대학교 대학원 소방공학과) ;
  • 최재욱 (부경대학교 소방공학과)
  • Kim, Jung-Hun (Dept. of Fire Protection Engineering, Graduate school of Pukyong National University) ;
  • Choi, Jae-Wook (Dept. of Fire Protection Engineering, Pukyong National University)
  • 투고 : 2016.01.20
  • 심사 : 2016.03.11
  • 발행 : 2016.04.30

초록

자연발화 특성은 가연성물질의 취급 및 화재예방을 위한 중요한 인자이다. 본 연구는 ASTM D2155식 발화온도 측정장치를 사용하여 Ethylene Glycol (EG)과 Diethylene Glycol (DEG)의 자연발화 특성 및 활성화에너지를 고찰하였다. 최소자연발화온도의 경우 EG는 시료량 $75{\sim}160{\mu}{\ell}$의 범위에서 $434^{\circ}C$를 구하였고 DEG는 시료량 $130{\sim}150{\mu}{\ell}$의 범위에서 $387^{\circ}C$를 측정 하였다. 또한 시료량 $140{\mu}{\ell}$에서 순간발화온도를 측정한 결과 EG는 $579^{\circ}C$, DEG는 $569^{\circ}C$를 나타내었다. 본 연구에서 측정된 발화온도와 발화지연시간의 측정값을 Semenov 방정식으로부터 최소자승법에 의하여 활성화 에너지를 구한 결과 EG는 25.41 Kcal/mol, DEG는 14.07 Kcal/mol을 구하였으며 DEG의 최소자연발화온도, 순간발화온도 및 활성화에너지가 EG보다 낮아 자연발화의 위험성이 더 높다는 것을 확인 할 수 있었다.

Auto ignition characteristic is an important factor for handling combustible substance and fire prevention. This research studied about auto ignition characteristic and activation energy of Ethylene Glycol (EG) and Diethylene Glycol (DEG) by using ASTM D2155 type ignition temperature measuring apparatus. As the auto ignition temperatures, it was possible to get $434^{\circ}C$ for EG within sample amount range of $75{\sim}160{\mu}l$ and $387^{\circ}C$ for DEG within sample amount range of $130{\sim}150{\mu}l$. Also, it was possible to get $579^{\circ}C$ and $569^{\circ}C$ as instantaneous ignition temperatures with sample amount of $140{\mu}l$ for EG and DEG respectively. By using least square method from Semenov equation on measured ignition temperature and ignition delay time from this study, it was possible to calculate activation energy of EG as 25.41 Kcal/mol and DEG as 14.07 Kcal/mol. Therefore, it was possible to claim that DEG has more risk of auto ignition since the auto ignition temperature, instantaneous ignition temperature and activation energy of DEG is lower than EG.

키워드

참고문헌

  1. Wikipedia, "The Properties of Ethylen Glycol", https://en.wikipedia.org/wiki/ethylene_glycol
  2. Wikipedia, "The Properties of Diethylen Glycol", https://en.wikipedia.org/wiki/Diethylene_glycol
  3. Choi, J. W., Mok, Y. S., Ha, D. M., "A Study on Spontaneous Ignition of Hydroxy Propyl Methyl Cellulose", Fire Science and Engineering, 15(4), 34-40, (2001)
  4. Kim, T. Y., Mok, Y. S., Choi, J. W., "A Study on the Flash Point and Spontaneous Ignition Determina tion of 2-Propanol and O-xylen Mixtures", Proceedings of 2011 Fall Annual Conference, Korean Institut e of Fire Science & Engineering, 360-363, (2011)
  5. Zabetakis, M. G., Furno, A. L. Jones, G. W., "Minimum Spontaneous Ignition Temperature of Combustible in Air", Industrial and Engineering Chemistry, 46(10), 2173-2178, (1954) https://doi.org/10.1021/ie50538a047
  6. Scott, G. S., Jones, G. W. and Scott, F. E., "Determination of Ignition Temperature of Combus tible Liquids and Gases", Analytical Chemistry, 20(3), 238-241, (1948) https://doi.org/10.1021/ac60015a015
  7. Choi, J. W., Mok, Y. S., Kim, S. Y., "A Study on Aut oignition Characteristics of 1-Heptene, 2-Heptene an d 3-Heptene", KIIS, 5(2), 17-23, (1990)
  8. Ha, D. M., "The Measurement and Prediction of Fire and Explosion Properties of 3-hxanone ", KIGAS, 17(6), 33-38, (2013)
  9. Ha, D. M., "The Measurement of the Fire and Expl osion Properties for 2-Methyl-1-butanol", KIGAS, 19(4), 8-14, (2015)
  10. Lee, G. B., "Comparison of Partial Least Squares and Support Vector Machine for the Autoignition Temperature Prediction of Organic Compounds", KIGAS, 16(1), 26-32, (2012)
  11. dinenno, P. J., Drysdale, D., Beyler, C. L., Walton, W. D., Custer, R. L. P., Hall, J. R., Watts, J. M. "The SFPE Handbook of Fire Protection Engineering", 3rd ed., SFPE, Maryland, (2002)
  12. Choi, J. W., Mok, Y. S., Choi, I. G., Jeon, S. H., Lim, W. S., Min, C. W., "A Study on the Spontaneous Ignition of Gasoline and Additive of Fuel", Fire Science and Engineering, 20(1), 1-5, (2006)
  13. Semenov, N. N., "Chemical Kinetics and Chain Reaction", Oxford University Press, Oxford, (1935)
  14. Jung, D. K., Choi, J. W., Lee, I. S., Lim, W. S., Kim, D. K., "A Study of Characteristics such as Spontaneous Ignition, Flash Point and Explosion Behavior of Methyl Ethyl Ketone Peroxide in order to Determine its Hazardousness", KOSOS, 20(3), 78-83, (2005)
  15. Ha, D. M., "The Study on Measurement and Prediction of combustible Properties for Aniline", KIGAS, 18(4), 44-50, (2014)
  16. Poly Science, "MSDS of Ethylene Glycol", http://www.horizontechinc.com/MSDS/PDF/p110-157.pdf
  17. Shell Chemicals, "MSDS of Ethylene Glycol", http://www.ppe.com/msds/EGF05_EGF55.PDF
  18. PTTGC, "MSDS of Diethylene Glycol", http://www.pttgcgroup.com/src/download/products/eo_based/DEG_MSDS.pdf
  19. NPC, "MSDS of Diethylene Glycol", http://www.petrochem-ir.net/ipcc_content/en/product/chemical/MSDS%20DEG-p.pdf

피인용 문헌

  1. A Study on Development direction for the Fishing Village Community according to Its Environmental Changes vol.29, pp.3, 2017, https://doi.org/10.13000/JFMSE.2017.29.3.899