References
- Azevedo, M. I., Pereira, A. F., Nogueira, R. B., Rolim, F. E., Brito, G. A., Wong, D. V., Lima-Junior, R. C., de Albuquerque Ribeiro, R. and Vale, M. L. (2013) The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain 9, 53. https://doi.org/10.1186/1744-8069-9-53
- Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S. and Patrick, J. (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. U.S.A. 84, 7763-7767. https://doi.org/10.1073/pnas.84.21.7763
- Castro, N. G. and Albuquerque, E. X. (1995) Alpha-bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys. J. 68, 516-524. https://doi.org/10.1016/S0006-3495(95)80213-4
- Changeux, J. and Edelstein, S. J. (2001) Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr. Opin. Neurobiol. 11, 369-377. https://doi.org/10.1016/S0959-4388(00)00221-X
-
Chavez-Noriega, L. E., Crona, J. H., Washburn, M. S., Urrutia, A., Elliott, K. J. and Johnson, E. C. (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors
$h{\alpha}2{\beta}2$ ,$h{\alpha}2{\beta}4$ ,$h{\alpha}3{\beta}2$ ,$h{\alpha}3{\beta}4$ ,$h{\alpha}4{\beta}2$ ,$h{\alpha}4{\beta}4$ and$h{\alpha}7$ expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 280, 346-356. - Chini, B., Raimond, E., Elgoyhen, A. B., Moralli, D., Balzaretti, M. and Heinemann, S. (1994) Molecular cloning and chromosomal localization of the human alpha 7-nicotinic receptor subunit gene (CHRNA7). Genomics 19, 379-381. https://doi.org/10.1006/geno.1994.1075
- Couturier, S., Bertrand, D., Matter, J. M., Hernandez, M. C., Bertrand, S., Millar, N., Valera, S., Barkas, T. and Ballivet, M. (1990) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5, 847-856 https://doi.org/10.1016/0896-6273(90)90344-F
- Dani, J. A. and Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699-729. https://doi.org/10.1146/annurev.pharmtox.47.120505.105214
- Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317-387. https://doi.org/10.3109/10409238709086960
-
Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E. and Heinemann, S. (1994)
${\alpha}9$ : an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705-715 https://doi.org/10.1016/0092-8674(94)90555-X - Galzi, J. L., Devillers-Thiery, A., Hussy, N., Bertrand, S., Changeux, J. P. and Bertrand, D. (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500-505. https://doi.org/10.1038/359500a0
- Gilbert, D., Lecchi, M., Arnaudeau, S., Bertrand, D. and Demaurex, N. (2009) Local and global calcium signals associated with the opening of neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium 45, 198-207. https://doi.org/10.1016/j.ceca.2008.10.003
- Gotti, C., Carbonnelle, E., Moretti, M., Zwart, R. and Clementi, F. (2000) Drugs selective for nicotinic receptor subtypes: a real possibility or a dream? Behav. Brain Res. 113, 183-192. https://doi.org/10.1016/S0166-4328(00)00212-6
- Gotti, C. and Clementi, F. (2004) Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363-396. https://doi.org/10.1016/j.pneurobio.2004.09.006
- Griebel, G., Perrault, G., Tan, S., Schoemaker, H. and Sanger, D. J. (1999) Pharmacological studies on synthetic flavonoids: comparison with diazepam. Neuropharmacology 38, 965-977. https://doi.org/10.1016/S0028-3908(99)00026-X
- Harborne, J. B. and Williams, C. A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
- Havsteen, B. H. (2002) The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67-202. https://doi.org/10.1016/S0163-7258(02)00298-X
- Jensen, M. L., Schousboe, A. and Ahring, P. K. (2005) Charge selectivity of the Cys-loop family of ligand-gated ion channels. J. Neurochem. 92, 217-225. https://doi.org/10.1111/j.1471-4159.2004.02883.x
- Kandaswami, C. and Middleton, E., Jr. (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol. 366, 351-376. https://doi.org/10.1007/978-1-4615-1833-4_25
- Karlin, A. (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102-114. https://doi.org/10.1038/nrn731
-
Khiroug, L., Giniatullin, R., Klein, R. C., Fayuk, D. and Yakel, J. L. (2003) Functional mapping and
$Ca^{2+}$ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J. Neurosci. 23, 9024-9031. https://doi.org/10.1523/JNEUROSCI.23-27-09024.2003 - Kim, H. J., Lee, B. H., Choi, S. H., Jung, S. W., Kim, H. S., Lee, J. H., Hwang, S. H., Pyo, M. K., Kim, H. C. and Nah, S. Y. (2015) Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch. Pharm. Res. 38, 108-114. https://doi.org/10.1007/s12272-014-0409-2
- Lee, B. H., Jeong, S. M., Lee, J. H., Kim, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Lee, S. M., Chang, C. G., Kim, H. C., Han, Y., Paik, H. D., Kim, Y. and Nah, S. Y. (2005) Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I. Mol. Cells 20, 69-73.
- Lee, B. H., Lee, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Pyo, M. K., Jeong, S. M., Choi, W. S., Shin, T. J., Lee, S. M., Rhim, H., Park, Y. S., Han, Y. S., Paik, H. D., Cho, S. G., Kim, C. H., Lim, Y. H. and Nah, S. Y. (2007) Human glycine alpha1 receptor inhibition by quercetin is abolished or inversed by alpha267 mutations in transmembrane domain 2. Brain Res. 1161, 1-10. https://doi.org/10.1016/j.brainres.2007.05.057
-
Lee, B. H., Choi, S. H., Shin, T. J., Pyo, M. K., Hwang, S. H., Kim, B. R., Lee, S. M., Lee, J. H., Kim, H. C., Park, H. Y., Rhim, H. and Nah, S. Y. (2010) Quercetin enhances human
${\alpha}7$ nicotinic acetylcholine receptor-mediated ion current through interactions with$Ca^{2+}$ binding sites. Mol. Cells 30, 245-253. - Lena, C. and Changeux, J. P. (1997) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674-682. https://doi.org/10.1016/S0959-4388(97)80088-8
- Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P. G., Cassels, B. K., Medina, J. G. and Paladini, A. C. (1996) 6-Bromoflavone, a high affinity ligand for the central benzodiazepine receptors is a member of a family of active flavonoids. Biochem. Biophys. Res. Commun. 223, 384-389. https://doi.org/10.1006/bbrc.1996.0903
- Medina, J. H., Viola, H., Wolfman, C,, Marder, M., Wasowski, C., Calvo, D. and Paladini, A. C. (1997) Overview--flavonoids: a new family of benzodiazepine receptor ligands. Neurochem. Res. 22, 419-425. https://doi.org/10.1023/A:1027303609517
- Murota, K. and Terao, J. (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 417, 12-17. https://doi.org/10.1016/S0003-9861(03)00284-4
- Nashmi, R. and Lester, H. A. (2006) CNS localization of neuronal nicotinic receptors. J. Mol. Neurosci. 30, 181-184. https://doi.org/10.1385/JMN:30:1:181
- Nemeth, K. and Piskula, M. K. (2007) Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr. 47, 397-409. https://doi.org/10.1080/10408390600846291
-
Oyama, Y., Fuchs, P. A., Katayama, N. and Noda, K. (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and
$Ca^{2+}$ -loaded brain neurons. Brain Res. 635, 125-129. https://doi.org/10.1016/0006-8993(94)91431-1 - Picq, M., Cheav, S. L. and Prigent, A. F. (1991) Effect of two flavonoid compounds on central nervous system. Analgesic activity. Life Sci. 49, 1979-1988. https://doi.org/10.1016/0024-3205(91)90640-W
- Revah, F., Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M. and Changeux, J. P. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846-849. https://doi.org/10.1038/353846a0
- Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. and Patrick, J. W. (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596-604. https://doi.org/10.1523/JNEUROSCI.13-02-00596.1993
- Speroni, E. and Minghetti, A. (1988) Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med. 54, 488-491. https://doi.org/10.1055/s-2006-962525
- Weiland, S., Bertrand, D. and Leonard, S. (2000) Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav. Brain Res. 113, 43-56. https://doi.org/10.1016/S0166-4328(00)00199-6
- Yao, Y., Han, D. D., Zhang, T. and Yang, Z. (2010) Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytother. Res. 24, 136-140. https://doi.org/10.1002/ptr.2902
Cited by
- Potential Therapeutic Targets of Quercetin and Its Derivatives: Its Role in the Therapy of Cognitive Impairment vol.8, pp.11, 2019, https://doi.org/10.3390/jcm8111789
- Sugar matters: sugar moieties as reactivity-tuning factors in quercetin O-glycosides vol.11, pp.6, 2016, https://doi.org/10.1039/d0fo00319k
- Quercetin Exhibits α7nAChR/Nrf2/HO-1-Mediated Neuroprotection Against STZ-Induced Mitochondrial Toxicity and Cognitive Impairments in Experimental Rodents vol.39, pp.6, 2021, https://doi.org/10.1007/s12640-021-00410-5
- Inductive and synergistic interactions between plant allelochemical flavone and Bt toxin Cry1Ac in Helicoverpa armigera vol.28, pp.6, 2016, https://doi.org/10.1111/1744-7917.12897