Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.153

Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents  

Lee, Byung-Hwan (Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University)
Choi, Sun-Hye (Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University)
Kim, Hyeon-Joong (Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University)
Jung, Seok-Won (Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University)
Hwang, Sung-Hee (Department of Pharmaceutical Engineering, Sangji University)
Pyo, Mi-Kyung (International Ginseng and Herb Research Institute)
Rhim, Hyewhon (Life Science Division, Korea Institute of Science and Technology)
Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University)
Kim, Ho-Kyoung (Mibyeong Research Center, Korea Institute of Oriental Medicine)
Lee, Sang-Mok (Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University)
Nah, Seung-Yeol (Department of Physiology, College of Veterinary Medicine and BioMolecular Informatics Center, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.24, no.4, 2016 , pp. 410-417 More about this Journal
Abstract
Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance ${\alpha}7$ nicotinic acetylcholine receptor (${\alpha}7$ nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of ${\alpha}7$ nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current ($I_{ACh}$) in Xenopus oocytes expressing the ${\alpha}7$ nAChR. $I_{ACh}$ was measured with a two-electrode voltage clamp technique. In oocytes injected with ${\alpha}7$ nAChR copy RNA, quercetin enhanced $I_{ACh}$, whereas quercetin glycosides inhibited $I_{ACh}$. Quercetin glycosides mediated an inhibition of $I_{ACh}$, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of $I_{ACh}$ inhibition by quercetin glycosides was Rutin${\geq}$Rham1>Rham2. Quercetin glycosides-mediated $I_{ACh}$ enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated $I_{ACh}$ inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated ${\alpha}7$ nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the ${\alpha}7$ nAChR in a differential manner.
Keywords
Flavonoids; Quercetin; Quercetin glycosides; ${\alpha}7$ nAChR;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Azevedo, M. I., Pereira, A. F., Nogueira, R. B., Rolim, F. E., Brito, G. A., Wong, D. V., Lima-Junior, R. C., de Albuquerque Ribeiro, R. and Vale, M. L. (2013) The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol. Pain 9, 53.   DOI
2 Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S. and Patrick, J. (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. U.S.A. 84, 7763-7767.   DOI
3 Castro, N. G. and Albuquerque, E. X. (1995) Alpha-bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys. J. 68, 516-524.   DOI
4 Changeux, J. and Edelstein, S. J. (2001) Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr. Opin. Neurobiol. 11, 369-377.   DOI
5 Chavez-Noriega, L. E., Crona, J. H., Washburn, M. S., Urrutia, A., Elliott, K. J. and Johnson, E. C. (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors $h{\alpha}2{\beta}2$, $h{\alpha}2{\beta}4$, $h{\alpha}3{\beta}2$, $h{\alpha}3{\beta}4$, $h{\alpha}4{\beta}2$, $h{\alpha}4{\beta}4$ and $h{\alpha}7$ expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 280, 346-356.
6 Chini, B., Raimond, E., Elgoyhen, A. B., Moralli, D., Balzaretti, M. and Heinemann, S. (1994) Molecular cloning and chromosomal localization of the human alpha 7-nicotinic receptor subunit gene (CHRNA7). Genomics 19, 379-381.   DOI
7 Couturier, S., Bertrand, D., Matter, J. M., Hernandez, M. C., Bertrand, S., Millar, N., Valera, S., Barkas, T. and Ballivet, M. (1990) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5, 847-856   DOI
8 Dani, J. A. and Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699-729.   DOI
9 Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317-387.   DOI
10 Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E. and Heinemann, S. (1994) ${\alpha}9$: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705-715   DOI
11 Galzi, J. L., Devillers-Thiery, A., Hussy, N., Bertrand, S., Changeux, J. P. and Bertrand, D. (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500-505.   DOI
12 Gilbert, D., Lecchi, M., Arnaudeau, S., Bertrand, D. and Demaurex, N. (2009) Local and global calcium signals associated with the opening of neuronal alpha7 nicotinic acetylcholine receptors. Cell Calcium 45, 198-207.   DOI
13 Gotti, C., Carbonnelle, E., Moretti, M., Zwart, R. and Clementi, F. (2000) Drugs selective for nicotinic receptor subtypes: a real possibility or a dream? Behav. Brain Res. 113, 183-192.   DOI
14 Gotti, C. and Clementi, F. (2004) Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363-396.   DOI
15 Jensen, M. L., Schousboe, A. and Ahring, P. K. (2005) Charge selectivity of the Cys-loop family of ligand-gated ion channels. J. Neurochem. 92, 217-225.   DOI
16 Griebel, G., Perrault, G., Tan, S., Schoemaker, H. and Sanger, D. J. (1999) Pharmacological studies on synthetic flavonoids: comparison with diazepam. Neuropharmacology 38, 965-977.   DOI
17 Harborne, J. B. and Williams, C. A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481-504.   DOI
18 Havsteen, B. H. (2002) The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67-202.   DOI
19 Kandaswami, C. and Middleton, E., Jr. (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv. Exp. Med. Biol. 366, 351-376.   DOI
20 Karlin, A. (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102-114.   DOI
21 Khiroug, L., Giniatullin, R., Klein, R. C., Fayuk, D. and Yakel, J. L. (2003) Functional mapping and $Ca^{2+}$ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J. Neurosci. 23, 9024-9031.   DOI
22 Kim, H. J., Lee, B. H., Choi, S. H., Jung, S. W., Kim, H. S., Lee, J. H., Hwang, S. H., Pyo, M. K., Kim, H. C. and Nah, S. Y. (2015) Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch. Pharm. Res. 38, 108-114.   DOI
23 Lee, B. H., Jeong, S. M., Lee, J. H., Kim, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Lee, S. M., Chang, C. G., Kim, H. C., Han, Y., Paik, H. D., Kim, Y. and Nah, S. Y. (2005) Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I. Mol. Cells 20, 69-73.
24 Marder, M., Viola, H., Wasowski, C., Wolfman, C., Waterman, P. G., Cassels, B. K., Medina, J. G. and Paladini, A. C. (1996) 6-Bromoflavone, a high affinity ligand for the central benzodiazepine receptors is a member of a family of active flavonoids. Biochem. Biophys. Res. Commun. 223, 384-389.   DOI
25 Lee, B. H., Lee, J. H., Yoon, I. S., Lee, J. H., Choi, S. H., Pyo, M. K., Jeong, S. M., Choi, W. S., Shin, T. J., Lee, S. M., Rhim, H., Park, Y. S., Han, Y. S., Paik, H. D., Cho, S. G., Kim, C. H., Lim, Y. H. and Nah, S. Y. (2007) Human glycine alpha1 receptor inhibition by quercetin is abolished or inversed by alpha267 mutations in transmembrane domain 2. Brain Res. 1161, 1-10.   DOI
26 Lee, B. H., Choi, S. H., Shin, T. J., Pyo, M. K., Hwang, S. H., Kim, B. R., Lee, S. M., Lee, J. H., Kim, H. C., Park, H. Y., Rhim, H. and Nah, S. Y. (2010) Quercetin enhances human ${\alpha}7$ nicotinic acetylcholine receptor-mediated ion current through interactions with $Ca^{2+}$ binding sites. Mol. Cells 30, 245-253.
27 Lena, C. and Changeux, J. P. (1997) Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674-682.   DOI
28 Medina, J. H., Viola, H., Wolfman, C,, Marder, M., Wasowski, C., Calvo, D. and Paladini, A. C. (1997) Overview--flavonoids: a new family of benzodiazepine receptor ligands. Neurochem. Res. 22, 419-425.   DOI
29 Murota, K. and Terao, J. (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 417, 12-17.   DOI
30 Nashmi, R. and Lester, H. A. (2006) CNS localization of neuronal nicotinic receptors. J. Mol. Neurosci. 30, 181-184.   DOI
31 Revah, F., Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M. and Changeux, J. P. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846-849.   DOI
32 Nemeth, K. and Piskula, M. K. (2007) Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr. 47, 397-409.   DOI
33 Oyama, Y., Fuchs, P. A., Katayama, N. and Noda, K. (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and $Ca^{2+}$-loaded brain neurons. Brain Res. 635, 125-129.   DOI
34 Picq, M., Cheav, S. L. and Prigent, A. F. (1991) Effect of two flavonoid compounds on central nervous system. Analgesic activity. Life Sci. 49, 1979-1988.   DOI
35 Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. and Patrick, J. W. (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596-604.   DOI
36 Speroni, E. and Minghetti, A. (1988) Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med. 54, 488-491.   DOI
37 Weiland, S., Bertrand, D. and Leonard, S. (2000) Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav. Brain Res. 113, 43-56.   DOI
38 Yao, Y., Han, D. D., Zhang, T. and Yang, Z. (2010) Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytother. Res. 24, 136-140.   DOI