DOI QR코드

DOI QR Code

Anti-Proliferative and Pro-Apoptotic Activities of 4-Methyl-2,6-bis(1-phenylethyl)phenol in Cancer Cells

  • Sung, Nak Yoon (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Seung Cheol (Division of Gynecologic Oncology Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University) ;
  • Kim, Yun Hwan (Division of Gynecologic Oncology Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University) ;
  • Kim, Gihyeon (Department of Chemistry, Kwangwoon University) ;
  • Lee, Yunmi (Department of Chemistry, Kwangwoon University) ;
  • Sung, Gi-Ho (Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University) ;
  • Kim, Ji Hye (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Yang, Woo Seok (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Mi Seon (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Baek, Kwang-Soo (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Jong-Hoon (Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2015.10.13
  • Accepted : 2015.11.24
  • Published : 2016.07.01

Abstract

It has been found that 4-isopropyl-2,6-bis(1-phenylethyl)phenol (KTH-13), a novel compound isolated from Cordyceps bassiana, is able to suppress tumor cell proliferation by inducing apoptosis. To mass-produce this compound, we established a total synthesis method. Using those conditions, we further synthesized various analogs with structural similarity to KTH-13. In this study, we aimed to test their anti-cancer activity by measuring anti-proliferative and pro-apoptotic activities. Of 8 compounds tested, 4-methyl-2,6-bis(1-phenylethyl)phenol (KTH-13-Me) exhibited the strongest anti-proliferative activity toward MDA-MB 231 cells. KTH-13-Me also similarly suppressed the survival of various cancer cell lines, including C6 glioma, HCT-15, and LoVo cells. Treatment of KTH-13-Me induced several apoptotic signs in C6 glioma cells, such as morphological changes, induction of apoptotic bodies, and nuclear fragmentation and chromatin condensation. Concordantly, early-apoptotic cells were also identified by staining with FITC-Annexin V/PI. Moreover, KTH-13-Me highly enhanced the activation of caspase-3 and caspase-9, and decreased the protein level of Bcl-2. In addition, the phosphorylation levels of Src and STAT3 were diminished in KTH-13-Me-treated C6 cells. Therefore, these results suggest that KTH-13-Me can be developed as a novel anti-cancer drug capable of blocking proliferation, inducing apoptosis, and blocking cell survival signaling in cancer cells.

Keywords

References

  1. Ali, I. and Braun, D. P. (2014) Resveratrol enhances mitomycin C-mediated suppression of human colorectal cancer cell proliferation by up-regulation of p21WAF1/CIP1. Anticancer Res. 34, 5439-5446.
  2. Bertrand, R., Solary, E., O'Connor, P., Kohn, K. W. and Pommier, Y. (1994) Induction of a common pathway of apoptosis by staurosporine. Exp. Cell Res. 211, 314-321. https://doi.org/10.1006/excr.1994.1093
  3. Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C. and Darnell, J. E., Jr. (1999) Stat3 as an oncogene. Cell 98, 295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
  4. Byeon, S. E., Lee, J., Yoo, B. C., Sung, G. H., Kim, T. W., Park, H. J. and Cho, J. Y. (2011a) p38-targeted inhibition of interleukin-12 expression by ethanol extract from Cordyceps bassiana in lipopolysaccharide-activated macrophages. Immunopharmacol. Immunotoxicol. 33, 90-96. https://doi.org/10.3109/08923973.2010.482137
  5. Byeon, S. E., Lee, S. Y., Kim, A. R., Lee, J., Sung, G. H., Jang, H. J., Kim, T. W., Park, H. J., Lee, S. J., Hong, S. and Cho, J. Y. (2011b) Inhibition of cytokine expression by a butanol extract from Cordyceps bassiana. Pharmazie 66, 58-62.
  6. Byeon, S. E., Yi, Y. S., Oh, J., Yoo, B. C., Hong, S. and Cho, J. Y. (2012) The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2012, 512926.
  7. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1-16. https://doi.org/10.1042/bj3260001
  8. Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A. and Olson, M. F. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 3, 339-345. https://doi.org/10.1038/35070009
  9. Hacker, G. (2000) The morphology of apoptosis. Cell Tissue Res. 301, 5-17. https://doi.org/10.1007/s004410000193
  10. Igney, F. H. and Krammer, P. H. (2002) Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277-288. https://doi.org/10.1038/nrc776
  11. Jin, C. Y., Kim, G. Y. and Choi, Y. H. (2008) Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 Cells. J. Microbiol. Biotechnol. 18, 1997-2003.
  12. Khanna, A., Pimanda, J. E. and Westermarck, J. (2013) Cancerous inhibitor of protein phosphatase 2A, an emerging human oncoprotein and a potential cancer therapy target. Cancer Res. 73, 6548-6553. https://doi.org/10.1158/0008-5472.CAN-13-1994
  13. Kim, H. G., Song, H., Yoon, D. H., Song, B. W., Park, S. M., Sung, G. H., Cho, J. Y., Park, H. I., Choi, S., Song, W. O., Hwang, K. C. and Kim, T. W. (2010) Cordyceps pruinosa extracts induce apoptosis of HeLa cells by a caspase dependent pathway. J. Ethnopharmacol. 128, 342-351. https://doi.org/10.1016/j.jep.2010.01.049
  14. Kim, M. Y. and Cho, J. Y. (2013) 20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages. J. Ginseng Res. 37, 300-307. https://doi.org/10.5142/jgr.2013.37.300
  15. Kim, M. J., Yun, H., Kim, D. H., Kang, I., Choe, W., Kim, S. S. and Ha, J. (2014a) AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to ginsenoside-Rh2. J. Ginseng Res. 38, 16-21. https://doi.org/10.1016/j.jgr.2013.11.010
  16. Kim, M. Y., Yoo, B. C. and Cho, J. Y. (2014b) Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line. J. Ginseng Res. 38, 251-255. https://doi.org/10.1016/j.jgr.2014.06.003
  17. Kim, Y. C., Song, S. B., Lee, S. K., Park, S. M. and Kim, Y. S. (2014c) The nuclear orphan receptor NR4A1 is involved in the apoptotic pathway induced by LPS and simvastatin in RAW 264.7 macrophages. Immune Netw. 14, 116-122. https://doi.org/10.4110/in.2014.14.2.116
  18. Kim, J. H., Lee, Y., Sung, G. H., Kim, H. G., Jeong, D., Park, J. G., Baek, K. S., Sung, N. Y., Yang, S., Yoon, D. H, Lee, S. Y., Kang, H., Song, C., Cho, J. H., Lee, K. H., Kim, T. W. and Cho, J. Y. (2015a) Antiproliferative and apoptosis-inducing activities of 4-isopropyl-2,6-bis (1-phenylethyl) phenol isolated from butanol fraction of Cordyceps bassiana. Evid. Based Complement Alternat. Med. 2015, 739874.
  19. Kim, M. S., Lee, Y., Sung, G. H., Kim, J. H., Park, J. G., Kim, H. G., Baek, K. S., Cho, J. H., Han, J., Lee, K. H., Hong, S., Kim, J. H. and Cho, J. Y. (2015b) Pro-apoptotic activity of 4-isopropyl-2-(1-phenylethyl) aniline isolated from Cordyceps bassiana. Biomol. Ther. (Seoul) 23, 367-373. https://doi.org/10.4062/biomolther.2015.021
  20. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T. and van Oers, M. H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415-1420.
  21. Lee, H., Kim, Y. J., Kim, H. W., Lee, D. H., Sung, M. K. and Park, T. (2006) Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biol. Pharm. Bull. 29, 670-674. https://doi.org/10.1248/bpb.29.670
  22. Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W. T. and Wang, X. (1998) The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. U.S.A. 95, 8461-8466. https://doi.org/10.1073/pnas.95.15.8461
  23. Mashima, T., Naito, M., Noguchi, K., Miller, D. K., Nicholson, D. W. and Tsuruo, T. (1997) Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14, 1007-1012. https://doi.org/10.1038/sj.onc.1200919
  24. Ng, T. B. and Wang, H. X. (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509-1519. https://doi.org/10.1211/jpp.57.12.0001
  25. Niu, G., Bowman, T., Huang, M., Shivers, S., Reintgen, D., Daud, A., Chang, A., Kraker, A., Jove, R. and Yu, H. (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21, 7001-7010. https://doi.org/10.1038/sj.onc.1205859
  26. Orrenius, S. (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab. Rev. 39, 443-455. https://doi.org/10.1080/03602530701468516
  27. Park, E. H., Kim, Y. J., Yamabe, N., Park, S. H., Kim, H. K., Jang, H. J., Kim, J. H., Cheon, G. J., Ham, J. and Kang, K. S. (2014) Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J. Ginseng Res. 38, 22-27. https://doi.org/10.1016/j.jgr.2013.11.007
  28. Rao, Y. K., Fang, S. H., Wu, W. S. and Tzeng, Y. M. (2010) Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator's production and human cancer cell proliferation. J. Ethnopharmacol. 131, 363-367. https://doi.org/10.1016/j.jep.2010.07.020
  29. Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J. and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol. 3, 346-352. https://doi.org/10.1038/35070019
  30. Siu, K. M., Mak, D. H., Chiu, P. Y., Poon, M. K., Du, Y. and Ko, K. M. (2004) Pharmacological basis of 'Yin-nourishing' and 'Yang-invigorating' actions of Cordyceps, a Chinese tonifying herb. Life Sci. 76, 385-395. https://doi.org/10.1016/j.lfs.2004.07.014
  31. Wi, S. M. and Lee, K. Y. (2014) 5-aminoimidazole-4-carboxamide riboside induces apoptosis through AMP-activated protein kinaseindependent and NADPH oxidase-dependent pathways. Immune Netw. 14, 241-248. https://doi.org/10.4110/in.2014.14.5.241
  32. Wu, J. Y., Zhang, Q. X. and Leung, P. H. (2007) Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine 14, 43-49.
  33. Wu, G., Li, L., Sung, G. H., Kim, T. W., Byeon, S. E., Cho, J. Y., Park, C. W. and Park, H. J. (2011) Inhibition of 2,4-dinitrofluorobenzeneinduced atopic dermatitis by topical application of the butanol extract of Cordyceps bassiana in NC/Nga mice. J. Ethnopharmacol. 134, 504-509. https://doi.org/10.1016/j.jep.2010.12.012
  34. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P. and Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132. https://doi.org/10.1126/science.275.5303.1129
  35. Zhou, X., Gong, Z., Su, Y., Lin, J. and Tang, K. (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol. 61, 279-291. https://doi.org/10.1211/jpp.61.03.0002

Cited by

  1. Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model vol.2017, 2017, https://doi.org/10.1155/2017/8474703
  2. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma vol.10, pp.14, 2018, https://doi.org/10.1039/C7NR09717D
  3. Cordyceps militaris Extract Inhibits the NF-κB pathway and Induces Apoptosis through MKK7-JNK Signaling Activation in TK-10 Human Renal Cell Carcinoma vol.13, pp.4, 2016, https://doi.org/10.1177/1934578x1801300422
  4. Gomisin G Suppresses the Growth of Colon Cancer Cells by Attenuation of AKT Phosphorylation and Arrest of Cell Cycle Progression vol.27, pp.2, 2016, https://doi.org/10.4062/biomolther.2018.054
  5. Cordyceps militarisExerts Antitumor Effect on Carboplatin-Resistant Ovarian Cancer via Activation of ATF3/TP53 Signaling In Vitro and In Vivo vol.15, pp.1, 2016, https://doi.org/10.1177/1934578x20902558
  6. In vitro anticancer potential of aerial parts of Ipomoea horsfalliae hook in different human cancer cell lines vol.155, pp.None, 2016, https://doi.org/10.1016/j.indcrop.2020.112746
  7. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation vol.20, pp.1, 2016, https://doi.org/10.1186/s12906-019-2780-5
  8. Evaluation of in vitro cytotoxic activity of different solvent extracts of Clerodendrum thomsoniae Balf.f and its active fractions on different cancer cell lines vol.7, pp.1, 2016, https://doi.org/10.1186/s43094-021-00206-6