과제정보
연구 과제 주관 기관 : National Research Foundation of Korea (NRF)
참고문헌
- S. Amat, M. A. Hernandez, and N. Romero, A modified Chebyshev's iterative method with at least sixth order of convergence, Appl. Math. Comput. 206 (2008), no. 1, 164-174. https://doi.org/10.1016/j.amc.2008.08.050
- I. K. Argyros, Convergence and Application of Newton-type Iterations, Springer, 2008.
- I. K. Argyros, Y. J. Cho, and S. George, On the "Terra incognita" for the Newton-Kantrovich method, J. Korean Math. Soc. 51 (2014), no. 2, 251-266. https://doi.org/10.4134/JKMS.2014.51.2.251
- I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and its Applications, Taylor & Francis, CRC Press, New York, 2012.
- I. K. Argyros, Y. J. Cho, and S. K. Khattri, On a new semilocal convergence analysis for the Jarratt method, J. Inequal. Appl. 2013 (2013), 194, 16 pp. https://doi.org/10.1186/1029-242X-2013-16
- I. K. Argyros, Y. J. Cho, and H. M. Ren, Convergence of Halley's method for operators with the bounded second derivative in Banach spaces, J. Inequal. Appl. 2013 (2013), 260, 12 pp. https://doi.org/10.1186/1029-242X-2013-12
- I. K. Argyros and S. Hilout, Computational methods in nonlinear Analysis, World Scientific Publ. House, New Jersey, USA, 2013.
- V. Candela and A. Marquina, Recurrence relations for rational cubic methods I: The Halley method, Computing 44 (1990), no. 2, 169-184. https://doi.org/10.1007/BF02241866
- J. Chen, Some new iterative methods with three-order convergence, Appl. Math. Comput. 181 (2006), no. 2, 1519-1522. https://doi.org/10.1016/j.amc.2006.02.037
- A. Cordero and J. Torregrosa, Variants of Newton's method using fifth order quadrature formulas, Appl. Math. Comput. 190 (2007), no. 1, 686-698. https://doi.org/10.1016/j.amc.2007.01.062
- J. A. Ezquerro and M. A. Hernandez, A uniparametric Halley-type iteration with free second derivative, Internat. Int. J. Pure Appl. Math. 6 (2003), no. 1, 103-114.
- J. A. Ezquerro and M. A. Hernandez, On the R-order of the Halley method, J. Math. Anal. Appl. 303 (2005), no. 2, 591-601. https://doi.org/10.1016/j.jmaa.2004.08.057
- J. A. Ezquerro and M. A. Hernandez, New iterations of R-order four with reduced computational cost, BIT 49 (2009), no. 2, 325-342. https://doi.org/10.1007/s10543-009-0226-z
- M. Frontini and E. Sormani, Some variants of Newton's method with third order con-vergence, Appl. Math. Comput. 140 (2003), no. 2-3, 419-426. https://doi.org/10.1016/S0096-3003(02)00238-2
- J. M. Gutierrez and M. A. Hernandez, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998), no. 7, 1-8.
- M. A. Hernandez, Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41 (2001), no. 3-4, 433-455. https://doi.org/10.1016/S0898-1221(00)00286-8
- M. A. Hernandez and M. A. Salanova, Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces, Southwest J. Pure Appl. Math. 1 (1999), no. 1, 29-40.
- M. V. Kanwar, V. K. Kukreja, and S. Singh, On some third-order iterative methods for solving nonlinear equations, Appl. Math. Comput. 171 (2005), no. 1, 272-280. https://doi.org/10.1016/j.amc.2005.01.057
- J. Kou and Y. Li, An improvement of the Jarratt method, Appl. Math. Comput. 189 (2007), no. 2, 1816-1821. https://doi.org/10.1016/j.amc.2006.12.062
- A. Y. Ozban, Some new variants of Newton's method, Appl. Math. Lett. 17 (2004), no. 6, 677-682. https://doi.org/10.1016/S0893-9659(04)90104-8
- S. K. Parhi and D. K. Gupta, Semilocal convergence of a Stirling-like method in Banach spaces, Int. J. Comput. Methods 7 (2010), no. 2, 215-228. https://doi.org/10.1142/S0219876210002210
- M. S. Petkovic, B. Neta, L. Petkovic, and J. Dzunic, Multipoint methods for solving nonlinear equations, Elsevier, 2013.
- F. A. Potra and V. Ptak, Nondiscrete induction and iterative processes, Research Notes in Mathematics, Vol. 103, Pitman Publ., Boston, MA, 1984.
- L. B. Rall, Computational solution of nonlinear operator equations, Robert E. Krieger, New York, 1979.
- H. Ren, Q.Wu, and W. Bi, New variants of Jarratt method with sixth-order convergence, Numer. Algorithms 52 (2009), no. 4, 585-603. https://doi.org/10.1007/s11075-009-9302-3
- W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, In: Mathematical models and numerical methods (Papers, Fifth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975), pp. 129-142, Banach Center Publ., 3, PWN, Warsaw, 1978.
- J. F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall Englewood Cliffs, New Jersey, USA, 1964.
- S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2
- X. Xiao and H. Yin, A new class of methods with higher order of convergence for solving systems of nonlinear equations, (submitted for publication).
- X. Wang and J. Kou, Convergence for modified Halley-like methods with less computa-tion of inversion, J. Difference Equ. Appl. 19 (2013), no. 9, 1483-1500. https://doi.org/10.1080/10236198.2012.761979
피인용 문헌
- Ball convergence of some iterative methods for nonlinear equations in Banach space under weak conditions 2017, https://doi.org/10.1007/s13398-017-0420-9
- Convergence Analysis of a Three Step Newton-like Method for Nonlinear Equations in Banach Space under Weak Conditions vol.54, pp.2, 2016, https://doi.org/10.1515/awutm-2016-0013
- Local Convergence for a Frozen Family of Steffensen-Like Methods under Weak Conditions vol.1, 2017, https://doi.org/10.11131/2017/101259