DOI QR코드

DOI QR Code

Reliability over time of wind turbines steel towers subjected to fatigue

  • Berny-Brandt, Emilio A. (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico) ;
  • Ruiz, Sonia E. (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico)
  • Received : 2015.11.06
  • Accepted : 2016.05.30
  • Published : 2016.07.25

Abstract

A probabilistic approach that combines structural demand hazard analysis with cumulative damage assessment is presented and applied to a steel tower of a wind turbine. The study presents the step by step procedure to compare the reliability over time of the structure subjected to fatigue, assuming: a) a binomial Weibull annual wind speed, and b) a traditional Weibull probability distribution function (PDF). The probabilistic analysis involves the calculation of force time simulated histories, fatigue analysis at the steel tower base, wind hazard curves and structural fragility curves. Differences in the structural reliability over time depending on the wind speed PDF assumed are found, and recommendations about selecting a real PDF are given.

Keywords

Acknowledgement

Supported by : DGAPA-UNAM

References

  1. ASTM E1049 (1985), Standard Practices for Cycle Counting in Fatigue Analysis, West Conshohocken, USA.
  2. BS 7910 (2005), Guide to methods for assessing the acceptability of flaws in metallic structures, London, UK.
  3. Carta, J.A., Ramirez, P. and Velazquez, S. (2009), "A review of wind speed probability distributions used in wind energy analysis. Case studies in the Canary Islands", Renewable and Sustainable Energy Reviews, 13, 933-955. https://doi.org/10.1016/j.rser.2008.05.005
  4. Celarec, D., Vamvatsikos, D. and Dolsek, M. (2011), "Simplified estimation of seismic risk for reinforced concrete buildings with consideration of corrosion", Bull. Earthq. Eng., 9, 1137-1155. https://doi.org/10.1007/s10518-010-9241-3
  5. CFE (2008), Manual de diseno de obras civiles: Diseno por viento, Mexico City, Mexico.
  6. Ciampoli, M., Petrini, F. and Augusti, G. (2011), "Performance-based wind engineering: towards a general procedure", Struct. Saf., 33, 367-378. https://doi.org/10.1016/j.strusafe.2011.07.001
  7. Cornell A.C. (1969), "A Probability-Based structural code", ACI J., No. 66-85.
  8. Dimopoulous, C.A., Koulatsou, K., Petrini, F. and Gantes, C.J. (2015), "Assessment of stiffening type of the cutout in tubular wind turbine towers under artificial dynamic wind actions", J. Comput. Nonlinear Dynam., 10(4), 041004-041004-9. https://doi.org/10.1115/1.4028074
  9. Do, T.Q., Van de Lindt J.W. and Mahmoud H.N. (2014), "Fatigue life model including crack propagation for wind turbine tower base connections", Struct. Congress, 1606-1615.
  10. IEC 61400-1(2005), Wind Turbines - Part 1: Design Requirements, Geneva, Switzerland.
  11. Jalayer, F. and Cornell, C.A. (2003), "A technical framework for probability-based demand and capacity factor design (DCFD ) seismic formats", Pacific Earthquake Engineering Center , Berkeley, USA.
  12. Jaramillo, O.A. and Borja M.A. (2004), "Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case", Renew.Energ., 29, 1613-1630. https://doi.org/10.1016/j.renene.2004.02.001
  13. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshore system development", National Renewable Energy Laboratory, Golden, USA.
  14. Lee, K.H. and Rosowsky, D.V. (2006), "Fragility curves for woodframe structures subjected to lateral wind loads", Wind Struct., 9(3), 217-230. https://doi.org/10.12989/was.2006.9.3.217
  15. Lindenburg, C., Winkelaar D. and Van Der Hooft, E.L. (2003), "DOWEC 6 MW Pre-Design: Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS", Energy Research Center of the Netherlands, Petten, The Netherlands.
  16. Moan, T., Hovde, G.O. and Jiao, G. (1993), "Fatigue reliability analysis of offshore structures considering the effect of inspection and repair", Proceedings of the 6th International Conference on Structural Safety and Reliability, Innsbruck, Austria, August.
  17. Moan, T. and Song, R. (2000), "Implications of inspection updating on system failure reliability of offshore structures", J. Offshore Mech.Arct., 122, 173-180. https://doi.org/10.1115/1.1286601
  18. Montiel, M.A. and Ruiz, S.E. (2007), "Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions", Earthq. Eng. Struct. Dynam., 36, 1915-1934. https://doi.org/10.1002/eqe.711
  19. Moriarty, P.J. and Hansen, C. (2005), "AeroDyn Theory Manual", National Renewable Energy Laboratory, Golden, USA.
  20. Newman, J.C. and Raju, I.S. (1981), "An empirical stress-intensity factor equation for the surface crack", Eng. Fract. Mech., 15(1-2), 185-192. https://doi.org/10.1016/0013-7944(81)90116-8
  21. Paris, P.C. and Erdogan, F. (1963), "A critical analysis of crack propagation laws", J. Basic Eng., 85, 528-534. https://doi.org/10.1115/1.3656900
  22. SAP2000v17 (2015), Structural and earthquake engineering software, Computers and Structures, Inc.
  23. Tolentino, D. and Ruiz, S.E. (2014), "Influence of structural deterioration over time on the optimal time interval for inspection and maintenance of structures", Eng. Struct., 61, 22-30. https://doi.org/10.1016/j.engstruct.2014.01.012
  24. Tolentino, D. and Ruiz, S.E. (2015), "Time-dependent confidence factor for structures with cumulative damage", 31(1), Earthq. Spectra, 1-21. https://doi.org/10.1193/030713EQS065M
  25. Torres, M.A and Ruiz, S.E. (2007), "Structural reliability evaluation considering capacity degradation over time", Eng. Struct., 29, 2183-2192. https://doi.org/10.1016/j.engstruct.2006.11.014
  26. Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dynam., 31(3), 491-514. https://doi.org/10.1002/eqe.141
  27. Veers, P.S. (1988), "Three-Dimensional Wind Simulation", Sandia National Laboratories, Albuquerque, USA.
  28. Veldkamp, H.F. (2006), Chances in Wind Energy: A probabilistic Approach to Wind Turbine Fatigue Design, Ph.D. Dissertation, Delft University, Delft, The Netherlands.

Cited by

  1. A Novel Tripod Concept for Onshore Wind Turbine Towers vol.14, pp.18, 2021, https://doi.org/10.3390/en14185772