DOI QR코드

DOI QR Code

Extraction of Flavonoid Components from Persimmon Leaf, Thistle and New Green

감잎, 엉겅퀴, 뉴그린으로부터 플라보노이드성분의 추출

  • Hong, In Kwon (Department of Chemical Engineering, Dankook University) ;
  • Park, Bo Ra (Department of Chemical Engineering, Dankook University) ;
  • Jeon, Gil Song (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
  • Received : 2016.03.20
  • Accepted : 2016.04.05
  • Published : 2016.06.10

Abstract

In this study, we extracted active components from thistle, persimmon leaf, and new green which are known to have a high content of antioxidants and also analyzed the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavening activity and flavonoid content. Both ultrapure water and alcohol were used as extraction solvents and the ratio of both solvents, sample, amunts extraction time, and extraction temperature were varied. The optimal extraction condition of each natural compounds were 2.5~3.5 h of the extraction time and 50 g/L of the sample amount. The optimal ratio of ultrapure water and alcohol and extraction temperature were as follows; persimmon leaf (55~65 vol%, $50{\sim}60^{\circ}C$), thistle (40~50 vol%, $55{\sim}65^{\circ}C$) and new green (55~65 vol%, $50{\sim}60^{\circ}C$). In addition, the antioxidant capacity and flavonoid content of the extract increased in the order of persimmon leaf, thistle, and new green.

본 연구에서는 항산화성분 함량이 높다고 알려진 천연물인 감잎, 엉겅퀴, 뉴그린을 이용하여 유효성분을 추출하고 DPPH radical scavening activity와 플라보노이드성분 함량분석을 수행하였다. 추출에 사용된 추출용매로는 초순수와 주정을 이용하였고, 초순수-주정의 비율, 시료의 양, 추출시간, 추출온도 등을 변수로 설정하였다. 각 천연물의 최적추출조건은 추출시간(2.5~3.5 h), 시료의 양은 50 g/L이었고, 주정/초순수의 부피비와 추출온도의 경우 각각 감잎(55~65 vol%, $50{\sim}60^{\circ}C$), 엉겅퀴(40~50 vol%, $55{\sim}65^{\circ}C$), 뉴그린(55~65 vol%, $50{\sim}60^{\circ}C$)으로 나타났다. 또한 추출된 유효성분의 항산화능과 플라보노이드성분 함량분석 결과 감잎 > 엉겅퀴 > 뉴그린 순으로 크게 나타났다.

Keywords

References

  1. M.-Y. Lee, M.-S. Yoo, Y.-J. Whang, Y.-J. Jin, M.-H. Hong, and Y.-H. Pyo, Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels, Korean J. Food Sci. Technol., 44(5), 540-544 (2012). https://doi.org/10.9721/KJFST.2012.44.5.540
  2. H. Y. Chung, B. Sung, K. J. Jung, Y. Zou, and B. P. Yu, The molecular inflammatory process in aging, Antioxid. Redox Signal., 8, 572-581 (2006). https://doi.org/10.1089/ars.2006.8.572
  3. S. H. Lee, L. J. Hong, H. G. Park, S. S. Ju, and G. T. Kim, Functional characteristics from the barley leaves and its antioxidant mixture, J. Korean Soc. Agric. Chem. Biotechnol., 46, 333-337 (2003).
  4. Y. Christen, Oxidative stress and Alzheimer disease, Am. J. Clin. Nutr., 71, 621-629 (2000). https://doi.org/10.1093/ajcn/71.2.621s
  5. A. Nunomura, R. Castellani, X. Zhu, P. Moreira, G. Perry, and M. Smith, Involvement of oxidative stress in Alzheimer disease, J. Neuropathol. Exp. Neurol., 65, 631-641 (2006). https://doi.org/10.1097/01.jnen.0000228136.58062.bf
  6. L. Van-Gaal, I. Mertens, and C. De-Block, Mechanisms linking obesity with cardiovascular disease, Nature, 444, 875-880 (2006). https://doi.org/10.1038/nature05487
  7. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative Activity and Component Analysis of Broussonetia kazinoki SIEB Extracts, App. Chem. Eng., 24(2), 177-183 (2013).
  8. G. Block and L. Langseth, Antioxidant vitamins and disease prevention, Food Technol., 48, 80-85 (1994).
  9. T. Finkel and N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature, 408(6809), 239-247 (2000). https://doi.org/10.1038/35041687
  10. H. S. Jeong and J.-H. Lee, Effects of dietary fiber from mozuku (cladosiphon novae-caledoniae kylin) residue on antioxidant activity and anticancer in HT-29 human colon cancer cells according to extraction condition, Appl. Chem. Eng., 25(4), 363-367 (2014). https://doi.org/10.14478/ace.2014.1039
  11. C. Cecchi, C. Fiorillo, S. Sorbi, S. Latorraca, B. Nacmias, S. Bacnoli, P. Nassi, and G. Liguri, Oxidative stress and reduced antioxidant defenses in peripheral cells from familial alzheimer's patients, Free radic. Biol. Med., 33(10), 1372-1379 (2002). https://doi.org/10.1016/S0891-5849(02)01049-3
  12. Y. Du, M. C. Wooten, and M. W. Wooten, Oxidative damage to the promoter region of SQSTM1/P62 is common to neurodegenerative disease, Neurobiol. Dis., 35, 302-310 (2009). https://doi.org/10.1016/j.nbd.2009.05.015
  13. H. S. Jeong, H. Joo, and J.-H. Lee, Antioxidant activity of dietary fibers from tubers and stalks of sweet potato and their anti-cancer effect in human colon cancer, Appl. Chem. Eng., 24(5), 525-529 (2013).
  14. M. S. Parco, Y. Wang, and E. A. Stephen, Apoptotic signaling induced by $H_{2}O_{2}$-mediated oxidative stress in differentiated $C_{2}C_{12}$ myotubes, Life Sci., 84(13-14), 468-481 (2009). https://doi.org/10.1016/j.lfs.2009.01.014
  15. A. H. Clifford and S. L. Cuppett, Anthocyanins-nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063-1072 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
  16. N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/0955-2863(95)00168-9
  17. Y. Lu and L. Y. Foo, Antioxidant and radical scavenging activities of polyphenols apple pomace, Food Chem., 68, 81-85 (2000). https://doi.org/10.1016/S0308-8146(99)00167-3

Cited by

  1. 반응표면분석법을 이용한 감잎과 엉겅퀴로부터 항산화성분의 추출공정 최적화 vol.28, pp.4, 2016, https://doi.org/10.14478/ace.2017.1037
  2. Optimization of Ultrasound-Assisted Extraction of Antioxidant from Cirsium setidens Using Response Surface Methodology vol.50, pp.3, 2016, https://doi.org/10.3746/jkfn.2021.50.3.285
  3. 마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화 vol.32, pp.2, 2021, https://doi.org/10.14478/ace.2021.1005