Browse > Article
http://dx.doi.org/10.14478/ace.2016.1027

Extraction of Flavonoid Components from Persimmon Leaf, Thistle and New Green  

Hong, In Kwon (Department of Chemical Engineering, Dankook University)
Park, Bo Ra (Department of Chemical Engineering, Dankook University)
Jeon, Gil Song (Department of Chemical Engineering, Dankook University)
Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 276-279 More about this Journal
Abstract
In this study, we extracted active components from thistle, persimmon leaf, and new green which are known to have a high content of antioxidants and also analyzed the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavening activity and flavonoid content. Both ultrapure water and alcohol were used as extraction solvents and the ratio of both solvents, sample, amunts extraction time, and extraction temperature were varied. The optimal extraction condition of each natural compounds were 2.5~3.5 h of the extraction time and 50 g/L of the sample amount. The optimal ratio of ultrapure water and alcohol and extraction temperature were as follows; persimmon leaf (55~65 vol%, $50{\sim}60^{\circ}C$), thistle (40~50 vol%, $55{\sim}65^{\circ}C$) and new green (55~65 vol%, $50{\sim}60^{\circ}C$). In addition, the antioxidant capacity and flavonoid content of the extract increased in the order of persimmon leaf, thistle, and new green.
Keywords
flavonoid contents; extraction; persimmon leaf; thistle; new green;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M.-Y. Lee, M.-S. Yoo, Y.-J. Whang, Y.-J. Jin, M.-H. Hong, and Y.-H. Pyo, Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels, Korean J. Food Sci. Technol., 44(5), 540-544 (2012).   DOI
2 H. Y. Chung, B. Sung, K. J. Jung, Y. Zou, and B. P. Yu, The molecular inflammatory process in aging, Antioxid. Redox Signal., 8, 572-581 (2006).   DOI
3 S. H. Lee, L. J. Hong, H. G. Park, S. S. Ju, and G. T. Kim, Functional characteristics from the barley leaves and its antioxidant mixture, J. Korean Soc. Agric. Chem. Biotechnol., 46, 333-337 (2003).
4 Y. Christen, Oxidative stress and Alzheimer disease, Am. J. Clin. Nutr., 71, 621-629 (2000).   DOI
5 A. Nunomura, R. Castellani, X. Zhu, P. Moreira, G. Perry, and M. Smith, Involvement of oxidative stress in Alzheimer disease, J. Neuropathol. Exp. Neurol., 65, 631-641 (2006).   DOI
6 L. Van-Gaal, I. Mertens, and C. De-Block, Mechanisms linking obesity with cardiovascular disease, Nature, 444, 875-880 (2006).   DOI
7 S. A. Park, J. H. Ha, and S. N. Park, Antioxidative Activity and Component Analysis of Broussonetia kazinoki SIEB Extracts, App. Chem. Eng., 24(2), 177-183 (2013).
8 G. Block and L. Langseth, Antioxidant vitamins and disease prevention, Food Technol., 48, 80-85 (1994).
9 T. Finkel and N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature, 408(6809), 239-247 (2000).   DOI
10 H. S. Jeong and J.-H. Lee, Effects of dietary fiber from mozuku (cladosiphon novae-caledoniae kylin) residue on antioxidant activity and anticancer in HT-29 human colon cancer cells according to extraction condition, Appl. Chem. Eng., 25(4), 363-367 (2014).   DOI
11 C. Cecchi, C. Fiorillo, S. Sorbi, S. Latorraca, B. Nacmias, S. Bacnoli, P. Nassi, and G. Liguri, Oxidative stress and reduced antioxidant defenses in peripheral cells from familial alzheimer's patients, Free radic. Biol. Med., 33(10), 1372-1379 (2002).   DOI
12 Y. Du, M. C. Wooten, and M. W. Wooten, Oxidative damage to the promoter region of SQSTM1/P62 is common to neurodegenerative disease, Neurobiol. Dis., 35, 302-310 (2009).   DOI
13 N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996).   DOI
14 H. S. Jeong, H. Joo, and J.-H. Lee, Antioxidant activity of dietary fibers from tubers and stalks of sweet potato and their anti-cancer effect in human colon cancer, Appl. Chem. Eng., 24(5), 525-529 (2013).
15 M. S. Parco, Y. Wang, and E. A. Stephen, Apoptotic signaling induced by $H_{2}O_{2}$-mediated oxidative stress in differentiated $C_{2}C_{12}$ myotubes, Life Sci., 84(13-14), 468-481 (2009).   DOI
16 A. H. Clifford and S. L. Cuppett, Anthocyanins-nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063-1072 (2000).   DOI
17 Y. Lu and L. Y. Foo, Antioxidant and radical scavenging activities of polyphenols apple pomace, Food Chem., 68, 81-85 (2000).   DOI