DOI QR코드

DOI QR Code

Effect of the Chemical Treatment and Fiber Length of Kenaf on Physical Properties of HDPE/Kenaf/Expandable Microcapsule

HDPE/케나프/열팽창성 마이크로 캡슐의 물성에 미치는 섬유 길이 및 화학처리 영향

  • Ku, Sun Gyo (Major in Polymer Science and Engineering, Kongju National University) ;
  • Lee, Jong Won (Major in Polymer Science and Engineering, Kongju National University) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 구선교 (공주대학교 고분자공학전공) ;
  • 이종원 (공주대학교 고분자공학전공) ;
  • 김연철 (공주대학교 고분자공학전공)
  • Received : 2016.03.19
  • Accepted : 2016.05.18
  • Published : 2016.06.10

Abstract

High density polyethylene (HDPE)/kenaf fiber (KF) composites included two types of KF with different lengths were fabricated by using a twin screw extruder. A thermally expandable microcapsule (EMC) was used to form HDPE/KF. The KF lengths were 0.3 mm and 3 mm. The contents of KF and EMC were fixed at 20 wt% and 5 wt%, respectively. From FT-IR data of KF, which underwent chemical treatment, peaks around 1700 and $1300cm^{-1}$ decreased. This might be caused by the reduction of lignin and hemicellulose due to the chemical treatment of KF. Based on the specific gravity, thermal stability and tensile property, physical properties of the composites with a 3 mm fiber were good. However, if the fiber is longer, poor appearance might be caused due to the thermal degradation during processing. Thus, the adequate length of KF should be chosen to maintain the appearance and physical properties for industrial applications of HDPE/KF/EMC composites. The tensile strength for 0.3 mm fiber treated with chemicals increased slightly.

길이가 다른 두 종류의 케나프 섬유(kenaf fiber, KF)가 적용된 고밀도폴리에틸렌(high density polyethylene, HDPE)/KF 복합체를 이축압출기를 이용하여 제조하였다. HDPE/KF 복합체의 발포를 위해 열팽창성 마이크로캡슐(thermal expandable microcapsule, EMC)이 이용되었다. 0.3과 3 mm 길이의 KF가 사용되었고, KF와 EMC의 함량은 각각 20 wt%와 5 wt%로 고정하였다. 화학처리된 KF의 FT-IR 결과 1700과 $1300cm^{-1}$ 근처에서의 피크 감소를 보여주는데, 이는 KF 성분 중 리그닌과 헤미셀룰로오스가 감소되기 때문으로 유추할 수 있다. 발포비중, 인장특성을 평가할 때 3 mm 섬유를 사용한 복합체의 물성이 양호하게 나타났지만, 섬유의 길이가 길수록 열분해에 의한 외관 불량 등의 문제가 발생할 수 있어 산업적 응용에 따라 적절한 섬유 길이의 선택이 요구된다. 화학 처리한 0.3 mm KF가 사용된 복합체의 인장강도가 소폭 증가하였다.

Keywords

References

  1. J. W. Sikora, V. Levytskyi, V. Moravskyi, and H. Gerlach, Twin screw extrusion with expancel foaming agent, J. Polym. Eng., 6, 33-37 (2013).
  2. C. Tissandier1, R. C. Vazquez Fletes, R. Gonzalez-Nunez, and D. Rodrigue, Microcellular agave fibre-high density polyethylene composites produced by injection molding, J. Mater. Sci. Eng. A, 11, 677-684 (2009).
  3. S. B. Kwak, S. L. Lee, H. Y. Lee, S. H. Yun, S. H. Kim, and J. Y. Lee, Development of door trim by integration process using eco uni-material, Confer. Korean Soc. Autom. Eng., 2491-2497 (2011).
  4. H. P. S. Abdul Khaili, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, and Y. S. Hadi, Bamboo fibre reinforced biocomposites : A review, Mater. Des., 42, 353-368 (2012). https://doi.org/10.1016/j.matdes.2012.06.015
  5. H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. A. Bakar, Kenaf fiber reinforced composites: A review, Mater. Des., 32, 4107-4121 (2011). https://doi.org/10.1016/j.matdes.2011.04.008
  6. J. W. Lee, S. G. Ku, B. H. Lee, K. W. Lee, C. W. Kim, K. S. Kim, and Y. C. Kim, Effect of the compatibilizer on physical properties of polypropylene/bamboo fiber composites, Appl. Chem. Eng., 26, 615-620 (2015). https://doi.org/10.14478/ace.2015.1091
  7. P. W. Balasuriya, L. Ye, Y.-W. Mai, and J. Wu, Mechanical properties of wood flake-polyethylene composites. II. Interface modification, J. Appl. Polym. Sci., 81, 2505-2521 (2002).
  8. Z. X. Zhang, D. L. Chen, K. H. Kwak, Z. X. Xim, and J. K. Kim, Effects of compatibilizers on the physico-mechanical and foaming properties of polyproylene/wood-fiber composites, J. Vinyl Addit. Technol., 19, 250-257 (2013). https://doi.org/10.1002/vnl.21318
  9. T. Panuikallio, J. Kasanen, M. Suvanto, and T. Pakkanen, Influence of maleated polypropylene on mechanical properties of composites made of viscose fiber and polypropylene, J. Appl. Polym. Sci., 87, 1895-1900 (2003). https://doi.org/10.1002/app.11919
  10. T. Kuboki, Y. H. Lee, C. B. Park, and M. Sain, Mechanical properties and foaming behavior of cellulose fiber reinforced high-density polyethylene composites, Polym. Eng. Sci., 49, 2179-2188 (2009). https://doi.org/10.1002/pen.21464
  11. G. Guo, Y. H. Lee, G. M. Rizvi, and C. B. Park, Influence of wood fiber size on extrusion foaming of wood fiber/HDPE composites, J. Appl. Polym. Sci., 107, 3505-3511 (2008). https://doi.org/10.1002/app.27467
  12. M. S. Meon, M. F. Othman, H. Husain, M. F. Remeli, and M. S. M. Syawal, Improving tensile properties of Kenaf fibers treated with sodium hydroxide, Procedia Eng., 41, 1587-1592 (2012). https://doi.org/10.1016/j.proeng.2012.07.354
  13. Z, Shi, Q. Yang, J. Cai, S. Kuga, and Y. Matsumoto, Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution, Cellulose, 21, 1205-1215 (2014). https://doi.org/10.1007/s10570-014-0226-2
  14. G. Xu, L. Wang, J. Liu, and J. Wu, FT-IR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi, Appl. Surf. Sci., 280, 199-805 (2013).
  15. T. Ozawa, Kinetics of non-isothermal crystallization, Polymer, 12, 150-158 (1971). https://doi.org/10.1016/0032-3861(71)90041-3