DOI QR코드

DOI QR Code

무인로봇체계에서 QoS 보장을 위한 트래픽 방향 기반 중앙집중식 TDMA 슬롯 할당 기법

Centralized TDMA Slot Assignment Scheme Based on Traffic Direction for QoS Guarantee in Unmanned Robot Systems

  • Han, Jina (Ajou University Department of Computer Engineering) ;
  • Kim, Dabin (Ajou University Department of Computer Engineering) ;
  • Ko, Young-Bae (Ajou University Department of Computer Engineering) ;
  • Kwon, DaeHoon (Agency for Defense Development)
  • 투고 : 2015.12.16
  • 심사 : 2016.04.08
  • 발행 : 2016.05.31

초록

본 논문은 무인로봇을 활용하는 군 정찰 환경에서 발생하는 트래픽 속성을 고려한 슬롯 할당 기법을 제안한다. 전장 지역을 탐지하고 적으로부터의 위협을 사전에 확인하기 위해 사람을 투입하는 것 대신 점차 무인로봇이 그 역할을 대신할 것으로 예상된다. 관제센터가 무인로봇을 조종하기 위해 전송하는 제어메시지의 경우, 한 번의 오작동이 큰 비극을 낳을 수 있기 때문에 고 신뢰성이 요구된다. 또한 각 무인로봇들이 감시정찰을 위해 관제센터로 전송하는 정찰용 멀티미디어 데이터의 경우, 실시간으로 끊김없는 영상을 제공하는 것이 중요하다. 본 논문에서는 이러한 무인로봇 환경의 요구사항을 고려하여 효과적인 데이터 전송을 보장하기 위해 per-path 기반의 중앙집중식 TDMA 슬롯 할당 기법을 제안하였다. 관제센터가 트래픽 방향을 기반으로 중앙집중식으로 슬롯을 할당함으로써 무인로봇들 간의 슬롯 할당 충돌을 감소시키고 전송 지연을 감소시킨다. 본 제안 기법은 ns-3 시뮬레이터를 활용하여 성능을 검증하였고 TDMA기반의 비교 알고리즘보다 높은 패킷 전송 성공률을 보였으며 다운링크 트래픽 전송 시나리오에서 비교 알고리즘에 비해 짧은 지연 시간을 보였다.

This paper proposes a time slot allocation scheme for military patrol environments. This proposal comes from analysis of traffic properties in a military patrol environment. In the near future, robots are expected to explore enemy grounds and measure threat, taking the place of human patrol. In order to control such robots, control messages must be extremely accurate. One mistake from the control center could cause a tragedy. Thus, high reliability must be guaranteed. Another goal is to maintain a continual flow of multimedia data sent from patrol robots. That is, QoS (Quality of Service) must be guaranteed. In order to transmit data while fulfilling both attributes, the per-path based centralized TDMA slot allocation scheme is recommended. The control center allocates slots to robots allowing synchronization among robots. Slot allocation collisions can also be avoided. The proposed scheme was verified through the ns-3 simulator. The scheme showed a higher packet delivery ratio than the algorithm in comparison. It also performed with shorter delay time in the downlink traffic transmission scenario than the algorithm in comparison.

키워드

참고문헌

  1. H. Baek, J. Lim, J. Koo, J. Jin, P. Chun, and I. Oh, "Reliable dynamic TDMA scheme with new packing method for image transmission over link-16," J. KICS, vol. 37, no. 11, pp. 1045-1053, Nov. 2012.
  2. W. S. Song, W. S. Jung, and Y. B. Ko, "Resource reservation based image data transmission scheme for surveillance sensor networks," J. KICS, vol. 39, no. 11, pp. 1104-1113, Nov. 2014.
  3. G. Choi, B. Kim, and B. H. Roh, "Classification of traffic classes for application services in military communication networks," J. KICS, vol. 37, no. 1, pp. 76-88, Jan. 2012. https://doi.org/10.7840/KICS.2012.37C.1.76
  4. I. Bekmezci and F. Alagoz, "Energy efficient, delay sensitive, fault tolerant wireless sensor network for military monitoring," Int. J. Distrib. Sensor Netw., vol. 5, no. 6, pp. 729-747, Nov. 2009. https://doi.org/10.1080/15501320902768625
  5. R. Ouni, "Dynamic slot assignment protocol for QoS support on TDMA-based mobile networks," Computer Standards & Interfaces, vol. 34, no. 1, pp. 146-155, Jan. 2012. https://doi.org/10.1016/j.csi.2011.06.003
  6. J. R. Cha, K. C. Go, J. H. Kim, and W. C. Park, "TDMA-based multi-hop resource reservation protocol for real-time applications in tactical mobile adhoc network," MILCOM 2010, pp. 1936-1941, San Jose, USA, Oct. 2010.
  7. W. Z. Song, R. Huang, B. Shirazi, and R. LaHusen, "TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks," Pervasive and Mobile Computing, vol. 5, no. 6, pp. 750-765, Dec. 2009. https://doi.org/10.1016/j.pmcj.2009.07.004
  8. G. S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo, "Funneling-MAC: a localized, sink-oriented MAC for boosting fidelity in sensor networks," in Proc. Int. Conf. Embedded Netw. Sensor Syst., pp. 293-306, New York, USA, Oct. 2006.
  9. D. W. Gage, "A brief history of unmanned ground vehicle (UGV) development efforts," Unmanned Systems Mag., vol. 13, no. 3, pp. 9-32, 1995.
  10. D. D. Vergados, D. J. Vergados, C. Douligeris, and S. L. Tombros, "QoS-aware TDMA for end-to-end traffic scheduling in ad hoc networks," IEEE Wirel. Commun., vol. 13, no. 5, pp. 68-74, Oct. 2006. https://doi.org/10.1109/WC-M.2006.250361