DOI QR코드

DOI QR Code

가로세로비에 따른 날개 하부 유동장의 공기역학적 영향

Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio

  • Cho, Cheolyoung (The 1st R&D Institute - 1st Directorate, Agency for Defense Development) ;
  • Park, Jongho (School of Mechanical Engineering, Chungnam National University)
  • 투고 : 2016.02.10
  • 심사 : 2016.03.15
  • 발행 : 2016.04.01

초록

본 논문에서는 날개의 가로세로비 변화가 날개 하부 유동장에 미치는 공기역학적 영향을 압력분포 측정과 입자영상속도계(PIV)를 이용하여 조사하였다. PIV 측정결과를 이용하여 파일런 주변 유동장의 속도변화를 레이놀즈수 $1.384{\times}10^5$$2.306{\times}10^5$의 조건에서 속도 성분별로 각각 분석하였다. 파일런으로부터 날개의 끝단이 시위 길이의 80% 만큼 떨어진 가로세로비 4.8의 경우, 날개 끝단으로부터의 끝단 와류의 영향이 날개 아랫면의 표면압력을 낮아지게 하고, 날개 끝단 주변의 흐름을 가속시킴으로써 날개 하부의 파일런 주변 유동장에 영향을 미쳤다. 시험결과에서는 가로세로비가 증가함에 따라 날개 하부 유동장에 대한 날개 끝단으로부터의 공기역학적 효과는 작아지는 경향을 보였다.

In this paper, aerodynamic effects on the flow field under the wing with varying aspect ratio were investigated by measuring pressures on the lower surface of wing and analysing velocity components using Particle Image Velocimetry at Reynolds numbers of $1.384{\times}10^5$ and $2.306{\times}10^5$. In case of aspect ratio 4.8 which keeps the wing tip at a distance of 80% chord length from the pylon, the vortex from the wing tip influenced the flow field under the wing by reducing static pressures on the lower surface and increasing the velocity in proximity of the wing tip. Throughout the results, it is observed that aerodynamic effects of wing tip on the flow field around pylon under wing become insignificant as the aspect ratio increases.

키워드

참고문헌

  1. "Aircraft/Stores Campatibility: Systems Engineering Data Requirements and Test Procedures," MIL-HDBK-1763, 1998.
  2. Kim, J., Jang, Y., Kwon, K., Jung, H., Jung, K. and Kim, S., "An Experimental Study on Internal Store Separation Characteristics," The Korean Society for Aeronautical and Space Sciences 2013 Spring Conference, Gangwon, Korea, pp. 97-100, Apr. 2013.
  3. Davis, M. C., Sim, A. G., Rhode, M. and Johnson, K. D., "Wind Tunnel Result of the B-52B with the X-43A Stack," 24th AIAA Applied Aerodynamics Conference, San Francisco, C.A., U.S.A., AIAA 2006-3850, Jun. 2006.
  4. Ahn, D., Ahn, S., Kang, S., Lee, K., Lee, J. and Kim, N., " '95 Annual Report on the Construction of Subsonic Wind Tunnel," ADD Report, ASDC-201-960426, 1996.
  5. Model 9116 Intelligent Pressure Scanner User's Manual, Pressure Systems Inc., Hampton, V.A., U.S.A., 2007.
  6. Linvin, M., Image Based Measurement Techniques, PIV, Dantec Dynamics A/S, Skovlunde, Denmark, 2009.
  7. Wernet, M. P., "Development of Digital Particle Imaging Velocimetry for use in Turbomachinery," Experiments in Fluids, Vol. 28, No. 2, pp. 97-115, 2000. https://doi.org/10.1007/s003480050015
  8. Drela, M. and Youngren, H., "XFOIL 6.9 User Primer," World Wide Web location http://web.mit.edu/drela/Public/web/xfoil_doc.txt, Version 6.9, 2001.