• Title/Summary/Keyword: Pylon

Search Result 135, Processing Time 0.023 seconds

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.594-597
    • /
    • 2009
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There also over-heating on the front surface of pylon without film cooling. The coolant injected parallel to the front surface of the pylon protect the pylon from over-heating.

  • PDF

An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge (사장교 주탑 형상에 따른 안정해석)

  • 임정열;윤영만;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF

A simplified method for estimating fundamental periods of pylons in overhead electricity transmission systems

  • Tian, Li;Gao, Guodong;Qu, Bing
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 2020
  • In seismic design of a pylon supporting transmission lines in an overhead electricity transmission system, an estimation of the fundamental periods of the pylon in two orthogonal vertical planes is necessary to compute the seismic forces required for sizing pylon members and checking pylon deflections. In current practice, the fundamental periods of a pylon in two orthogonal vertical planes are typically obtained from eigenvalue analyses of a model consisting of the pylon of interest as well as some adjacent pylons and the transmission lines supported by these pylons. Such an approach is onerous and numerically inconvenient. This research focused on development of a simplified method to determine the fundamental periods of pylons. The simplified method is rooted in Rayleigh's quotient and is based on a single-pylon model. The force vectors that can be used to generate the shape vectors required in Rayleigh's quotient are presented in detail. Taking three pylons selected from representative overhead electricity transmission systems having different design parameters as examples, the fundamental periods of the chosen pylons predicted from the simplified method were compared with those from the rigorous eigenvalue analyses. Result comparisons show that the simplified method provides reasonable predictions and it can be used as a convenient surrogate for the tedious approach currently adopted.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating were investigated. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There was also over-heating on the front surface of the pylon without film cooling. The coolant injected parallel to the front surface of the pylon protects the pylon from over-heating.

The characteristics of the multi-span suspension bridge with double main cables in the vertical plane

  • Zhang, Li-Wen;Xiao, Ru-Cheng;Jiang, Yang;Chai, Sheng-Bo
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.291-311
    • /
    • 2012
  • The multi-span suspension bridge having double main cables in the vertical plane is investigated regarding endurance of live load distribution in the case of non-displaced pylon and pylon displacement. The coefficient formula of live load distribution described as the ratio of live load on the bottom cable to the top cable is obtained. Based on this formula, some function in respect of this bridge are derived and used to analyze its characteristics. This analysis targets the cable force, the cable sag and the horizontal displacement at the pylon top under live load etc. The results clarified that the performance of the live load distribution and the horizontal force of cables in the case of non-deformed pylon has a similar tendency to those in the case of deformed pylon, and the increase of pylon rigidity can increase live load distributed to the bottom cable and slightly raise the cable horizontal force under live load. However, effect on the vertical rigidity of bridge and the horizontal force increment of cables caused by live load is different in the case of non-deformed pylon and deformed pylon.

Transverse buckling analysis of spatial diamond-shaped pylon cable-stayed bridge based on energy approach

  • Zheng, Xing;Huang, Qiao;Zheng, Qing-gang;Li, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.123-134
    • /
    • 2022
  • The stability of cable-stayed bridges is an important factor considered during design. In recent years, the novel spatial diamond-shaped bridge pylon has shown its advantages in various aspects, including the static response and the stability performance with the development of cable-stayed bridge towards long-span and heavy-load. Based on the energy approach, this paper presents a practical calculation method of the completed state stability of a cable-stayed bridge with two spatial diamond-shaped pylons. In the analysis, the possible transverse buckling of the girder, the top pylon column, and the mid pylon columns are considered simultaneously. The total potential energy of the spatial diamond-shaped pylon cable-stayed bridge is calculated. And based on the principle of stationary potential energy, the transverse buckling coefficients and corresponding buckling modes are obtained. Furthermore, an example is calculated using the design parameters of the Changtai Yangtze River Bridge, a 1176 m cable-stayed bridge under construction in China, to verify the effectiveness and accuracy of the proposed method in practical engineering. The critical loads and the buckling modes derived by the proposed method are in good agreement with the results of the finite element method. Finally, cable-stayed bridges varying pylon and girder stiffness ratios and pylon geometric dimensions are calculated to discuss the applicability and advantages of the proposed method. And a further discussion on the degrees of the polynomial functions when assuming buckling modes are presented.

Analytical study on free vertical and torsional vibrations of two- and three-pylon suspension bridges via d'Alembert's principle

  • Zhang, Wen-ming;Wang, Zhi-wei;Zhang, Hao-qing;Lu, Xiao-fan;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • This study derives the differential equations of free vertical bending and torsional vibrations for two- and three-pylon suspension bridges using d'Alembert's principle. The respective algorithms for natural vibration frequency and vibration mode are established through the separation of variables. In the case of the three-pylon suspension bridge, the effect of the along-bridge bending vibration of the middle pylon on the vertical bending vibration of the entire bridge is considered. The impact of torsional vibration of the middle pylon about the vertical axis on the torsional vibration of the entire bridge is also analyzed in detail. The feasibility of the proposed method is verified by two engineering examples. A comparative analysis of the results obtained via the proposed and more intricate finite element methods confirmed the former feasibility. Finally, the middle pylon stiffness effect on the vibration frequency of the three-pylon suspension bridge is discussed. It is found that the vibration frequencies of the first- and third-order vertical bending and torsional modes both increase with the middle pylon stiffness. However, the increase amplitudes of third-order bending and torsional modes are relatively small with the middle pylon stiffness increase. Moreover, the second-order bending and torsional frequencies do not change with the middle pylon stiffness.

A Study on the Improvement of the Steel Pylon Base Design Using Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 기존 강재 주탑기부 설계의 개선방안 연구)

  • Jung, Soo-Hyung;Park, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2014
  • In this study nonlinear FEM analysis for steel pylon base of a cable supported bridge is performed in order to compare the results of Akashi-Kaikyo bridge's design specification established in 1970. Due to convenience of its application, the Akashi grand bridge's design specification has been applied to the base design of cable stayed bridges. It has been using linear spring in order to model prestressed high tensioned bars between steel pylon bottom plates and the base concrete. However, the results of nonlinear FEM analysis revealed that the Akashi-Kaikyo bridge's design specification has various problems in the analysis of the steel pylon base. And the steel pylon base has various complex members connecting with each other, and it is main member to resist against the wind load or the earthquake load. Therefore, the nonlinear FEM analysis has to be conducted in order to predict the behavior of steel pylon base exactly. Also, the nonlinear FEM analysis is more reasonable for the load and resistant factor design.

Seismic design strategy of cable stayed bridges subjected to strong ground motions

  • Xu, Yan;Duan, Xinzhi;Li, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.909-922
    • /
    • 2014
  • In this paper, we present an alternative seismic design strategy for cable stayed bridges with concrete pylons when subjected to strong ground motions. The comparison of conventional seismic design using supplemental dampers (strategy A) and the new strategy using nonlinear seismic design of pylon columns (strategy B) is exemplified by one typical medium span cable stayed bridge subjected to strong ground motions from 1999 Taiwan Chi-Chi earthquake and 2008 China Wenchuan earthquake. We first conducted the optimization of damper parameters according to strategy A in response to the distinct features that strong ground motions contain. And then we adopted strategy B to carry out seismic analysis by introducing the elastic-plastic elements that allowing plasticity development in the pylon columns. The numerical results show that via strategy A, the earthquake induced structural responses can be kept in the desired range provided with the proper damping parameters, however, the extra cost of unusual dampers will be inevitable. For strategy B, the pylon columns may not remain elastic and certain plasticity developed, but the seismic responses of the foundation will be greatly decreased, meanwhile, the displacement at the top of pylon seems to be not affected much by the yielding of pylon columns, which indicates the pylon nonlinear design can be an alternative design strategy when strong ground motions have to be considered for the bridge.

Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass

  • Li, Jiawu;Shen, Zhengfeng;Xing, Song;Gao, Guangzhong
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.85-97
    • /
    • 2020
  • The accurate estimation of the buffeting response of a bridge pylon is related to the quality of the bridge construction. To evaluate the influence of wind field characteristics on the buffeting response of a pylon in a trumpet-shaped mountain pass, this paper deduced a multimodal coupled buffeting frequency domain calculation method for a variable-section bridge tower under the twisted wind profile condition based on quasi-steady theory. Through the long-term measurement of the wind field of the trumpet-shaped mountain pass, the wind characteristics were studied systematically. The effects of the wind characteristics, wind yaw angles, mean wind speeds, and wind profiles on the buffeting response were discussed. The results show that the mean wind characteristics are affected by the terrain and that the wind profile is severely twisted. The optimal fit distribution of the monthly and annual maximum wind speeds is the log-logistic distribution, and the generalized extreme value I distribution may underestimate the return wind speed. The design wind characteristics will overestimate the buffeting response of the pylon. The buffeting response of the pylon is obviously affected by the wind yaw angle and mean wind speed. To accurately estimate the buffeting response of the pylon in an actual construction, it is necessary to consider the twisted effect of the wind profile.