DOI QR코드

DOI QR Code

Hot-Injection Thermolysis of Cobalt Antimony Nanoparticles with Co(II)-Oleate and Sb(III)-Oleate

  • Ahn, Jong-Pil (Department of Business Corperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Min-Suk (Department of Business Corperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Se-Hoon (Department of Business Corperation Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Byung-Ha (Department of Materials Science and Engineering, Myongji University) ;
  • Kim, Do-Kyung (Department of Pharmacology, College of Medicine, Konyang University) ;
  • Park, Joo-Seok (Department of Business Corperation Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2016.03.14
  • Accepted : 2016.04.26
  • Published : 2016.05.31

Abstract

A novel strategy for the synthesis of $CoSb_2$ nanoparticles is demonstrated via preparation of novel organometallic complexes. Hydrated cobalt oleate (CoOl) and non-hydrated antimony oleate (SbOl) complexes are synthesized as precursors. The $CoSb_2$ nanoparticles are prepared by hot injection, which involves thermolysis of CoOl and SbOl in a non-coordinating solvent at $320^{\circ}C$. The coordination modes and distinct thermal behaviors of the intermediate non-hydrated SbOl complexes are comparatively investigated by thermo-analytical techniques. When the reaction temperature is increased, the particle size is found to increase linearly. The crystallinity of the $CoSb_2$ nanoparticles prepared at $250^{\circ}C$ is amorphous phase without any peaks. $CoSb_2$ structural peaks start to appear at $300^{\circ}C$ and dominant peaks with high crystallinity are synthesized at $320^{\circ}C$. The potential chemical structures of non-hydrated SbOl and their reaction mechanisms by thermolysis are elucidated. The elemental composition and crystallographic structure of $CoSb_2$ nanoparticles suggest a bimodal interaction of the organic shell and the nanoparticle surface, with a chemical absorbed inner layer and physically absorbed outer layer of carboxylic acid.

Keywords

References

  1. S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-Eli, "Bundled and Densified Carbon Nanotubes (CNT) Fabrics as Flexible Ultra-Light Weight Li-ion Battery Anode Current Collectors," J. Power Sources, 312 109-15 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.026
  2. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, "Carbon Nanotubes for Lithium Ion Batteries," Energy Environ. Sci., 2 [6] 638-54 (2009). https://doi.org/10.1039/b904116h
  3. X. He, J. Wang, H. Jia, R. Kloepsch, H. Liu, K. Beltrop, and J. Li, "Ionic Liquid-Assisted Solvothermal Synthesis of Hollow Mn2O3 Anode and $LiMn_2O_4$ Cathode Materials for Li-ion Batteries," J. Power Sources, 293 306-311 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.106
  4. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, "Nanostructured Materials for Advanced Energy Conversion and Storage Devices," Nat. Mater., 4 [5] 366-77 (2005). https://doi.org/10.1038/nmat1368
  5. H. Li, L. Shi, Q. Wang, L. Chen, and X. Huang, "Nano-Alloy Anode for Lithium Ion Batteries," Solid State Ionics, 148 [3-4] 247-58 (2002). https://doi.org/10.1016/S0167-2738(02)00061-9
  6. J. Leibowitz, E. Allcorn, and A. Manthiram, "$FeSn_2$-TiC Nanocomposite Alloy Anodes for Lithium Ion Batteries," J. Power Sources, 295 125-30 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.144
  7. B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon, H. B. Na, J.-G. Park, T.-Y. Ahn, Y.-W. Kim, W. K. Moon, S. H. Choi, and T. Hyeon, "Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents," J. Am. Chem. Soc., 133 [32] 12624-31 (2011). https://doi.org/10.1021/ja203340u
  8. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, "Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals," Nat. Mater., 3 [12] 891-95 (2004). https://doi.org/10.1038/nmat1251
  9. A. P. Herrera, L. Polo-Corrales, E. Chavez, J. Cabarcas-Bolivar, O. N. C. Uwakweh, and C. Rinaldi, "Influence of Aging Time of Oleate Precursor on the Magnetic Relaxation of Cobalt Ferrite Nanoparticles Synthesized by the Thermal Decomposition Method," J. Magn. Magn. Mater., 328 41-52 (2013). https://doi.org/10.1016/j.jmmm.2012.09.069
  10. M. Lin and D. Kim, "In situ Thermolysis of Magnetic Nanoparticles Using Non-Hydrated Iron Oleate Complex," J. Nanopart. Res., 14 [2] 1-13 (2012).
  11. A. Repko, D. Niznansky, and J. Poltierova-Vejpravova, "A Study of Oleic Acid-based Hydrothermal Preparation of CoFe2O4 Nanoparticles," J. Nanopart. Res., 13 [10] 5021-31 (2011). https://doi.org/10.1007/s11051-011-0483-z
  12. H. Yang, H. Zhou, C. Zhang, X. Li, H. Hu, H. Wu, and S. Yang, "Water-Soluble Magnetic CoO Nanocrystals Functionalized with Surfactants as T2-Weighed MRI Contrast Agentsin Vitro," Dalton Trans., 40 [14] 3616-21 (2011). https://doi.org/10.1039/c1dt10107b
  13. G. Clavel, M. G. Willinger, D. Zitoun, and N. Pinna, "Solvent Dependent Shape and Magnetic Properties of Doped ZnO Nanostructures," Adv. Funct. Mater., 17 [16] 3159-69 (2007). https://doi.org/10.1002/adfm.200601142
  14. H. Shao, H. Lee, Y. Huang, K. InYong, and C. Kim, "Control of Iron Nanoparticles Size and Shape by Thermal Decomposition Method," IEEE Trans. Magn., 41 [10] 3388-90 (2005). https://doi.org/10.1109/TMAG.2005.855206
  15. J. Schallibaum, F. H. Dalla Torre, W. R. Caseri, and J. F. Loffler, "Large-Scale Synthesis of Defined Cobalt Nanoparticles and Magnetic Metal-Polymer Composites," Nanoscale, 1 [3] 374-81 (2009). https://doi.org/10.1039/b9nr00230h
  16. S. H. Sun and C. B. Murray, "Synthesis of Monodisperse Cobalt Nanocrystals and their Assembly into Magnetic Superlattices (invited)," J. Appl. Phys., 85 [8] 4325-30 (1999). https://doi.org/10.1063/1.370357
  17. J. Xie, G. S. Cao, X. B. Zhao, Y. D. Zhong, and M. J. Zhao "Electrochemical Performances of Nanosized Intermetallic Compound $CoSb_2$ Prepared by the Solvothermal Route," J. Electrochem. Soc., 151 [11] A1905-10 (2004). https://doi.org/10.1149/1.1804852
  18. J. Xie, X. B. Zhao, G. S. Cao, Y. D. Zhong, M. J. Zhao, and J. P. Tu, "Solvothermal Synthesis of Nanosized CoSb2 Alloy Anode for Li-ion Batteries," Electrochim. Acta, 50 [9] 1903-1907 (2005). https://doi.org/10.1016/j.electacta.2004.08.043
  19. P. Amornpitoksuk and S. Suwanboon, "Synthesis, Characterization and Thermal Study of $CoSb_2$ Semiconductor by Mechanical Alloying," J. Alloys Compd., 473 [1-2] 373-75 (2009). https://doi.org/10.1016/j.jallcom.2008.05.098
  20. B. Rajesh Babu, M. S. R. Prasad, K. V. Ramesh, and Y. Purushotham, "Structural and Magnetic Properties of $Ni_{0.5}Zn_{0.5}Al_xFe_{2-x}O_4$ Nano Ferrite System," Mater. Chem. Phys., 148 [3] 585-91 (2014). https://doi.org/10.1016/j.matchemphys.2014.08.019
  21. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007). https://doi.org/10.1021/cm062948j
  22. N. Shukla, C. Liu, P. M. Jones, and D. Weller, "FTIR Study of Surfactant Bonding to FePt Nanoparticles," J. Magn. Magn. Mater., 266 [1-2] 178-84 (2003). https://doi.org/10.1016/S0304-8853(03)00469-4