DOI QR코드

DOI QR Code

비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time

  • 김상호 (상지대학교 건설시스템공학과) ;
  • 이창희 (중원대학교 방재안전공학과)
  • Kim, Sang Ho (Department of Civil Engineering, Sangji University) ;
  • Lee, Chang Hee (Department of Disaster Management & Safety Engineering, Jungwon University)
  • 투고 : 2016.03.23
  • 심사 : 2016.04.07
  • 발행 : 2016.05.31

초록

하도 홍수추적과 관련하여 하천에서의 시 공간적 홍수파를 해석하는데 수리학적 방법과 수문학적 방법이 일반적으로 많이 이용되어 왔다. 수문학적 홍수추적 방법은 수리학적 방법에 비해 수행하기에는 비교적 간단하면서도 합리적인 정확성을 지닌다. 수문학적 홍수추적 방법 중 광범위하게 적용되어지고 있는 Muskingum 모형의 중요 변수인 저류상수는 유하시간과 매우 유사한 값을 가진다. 이러한 점에 착안하여 본 연구에서는 저류상수를 산정하기 위해 HEC-RAS를 이용한 유하시간을 산정하고, 하도거리, 하도경사, 유량 자료를 이용하여 유하시간에 대한 비선형 회귀곡선식을 개발하였다. 비선형 회귀곡선에 의해서 산정된 저류상수를 Muskingum 모형에 대입하여 구한 유출량은 HEC-RAS 1차원 부정류 모의를 적용하여 산정된 유출량과 비교하였다. 이와 함께 본 연구에서는 가중인자에 대한 영향 및 상하류 사이의 구간 분할에 대해서 검토하였는데, 그 결과 가중인자 값이 클수록 첨두홍수량이 올라가는 것으로 나타났으며, 구간 분할을 많이 할수록 RMSE가 감소하는 것으로 나타났다.

Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

키워드

참고문헌

  1. Choudhury, P., Shrivastava, RK, and Narulkar, SM (2002). Flood routing in river networks using equivalent Muskingum inflow. J. of Hydrologic Engineering, 7(1), pp. 413-419. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:6(413)
  2. France, PW (1985). Hydrologic routing with a microcomputer. Advanced in Engineering Software, 7(1), pp. 8-12. https://doi.org/10.1016/0141-1195(85)90087-7
  3. Haktanir, T. and Ozmen, H. (1997). Comparison of Hydraulic and Hydrologic Routing on Three Long Reservoirs, J. of Hydraulic Engineering, 123(2), pp. 153-156. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(153)
  4. Kim, JH, Geem, ZW, and Kim, ES (2001). Parameter estimation of the nonlinear Muskingum model using harmony search. J. of the American Water Resources Association, 37(5), pp. 1131-1138. https://doi.org/10.1111/j.1752-1688.2001.tb03627.x
  5. Kundzewicz, ZW, and Strupczewski, WG (1982). Approximate translation in the Muskingum model. Hydrological Sciences Journal. 27(1), pp. 19-26. https://doi.org/10.1080/02626668209491082
  6. Lu, F., Jiang, YZ, Wang, H., and Niu, CW (2008). Application of multi-agent genetic algorithm to parameter estimation of Muskingum model. J. of Hydraulic Enginnering, 39(3), pp. 289-294.
  7. McCarthy, GT (1938). The unit hydrograph and flood routing. US Army Corps Eng., New London, CT. US Engineering Office, Providence RI.
  8. McCuen, RH (2004). Hydrologic Analysis and Design, chap. 10, ISBN-10:0131424246, ISBN-13:9780131424241, Prentice Hall.
  9. Singh, VP (1988). Hydrologic Systems. Rainfall-Runoff Modelling. Prentice Hall, New Jersey, USA.
  10. Tung, YK (1985). River flood routing by nonlinear Muskingum method. J. of Hydraulic Engineering. 111(12), pp. 1447-1460. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:12(1447)
  11. Yang, XH, and Li, JQ (2008). Chaos high efficient genetic algorithm for parameter optimization of Muskingum routing model. J. of Hydroelectric Engineering. 27(2), pp. 40-44.