DOI QR코드

DOI QR Code

산성 환경이 Tricalcium Silicate 재료의 압출강도와 표면형태에 미치는 영향

Effect of Acidic Environment on the Push-Out Bond Strength and Surface Morphology of Tricalcium Silicate Materials

  • 박미선 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 김재환 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 최남기 (전남대학교 치의학전문대학원 소아치과학교실) ;
  • 김선미 (전남대학교 치의학전문대학원 소아치과학교실)
  • Park, Misun (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University) ;
  • Kim, Jaehwan (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University) ;
  • Choi, Namki (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University) ;
  • Kim, Seonmi (Department of Pediatric Dentistry, College of Dentistry, Chonnam National University)
  • 투고 : 2015.07.22
  • 심사 : 2015.10.16
  • 발행 : 2016.05.31

초록

이 연구의 목적은 다양한 산성 환경에서 규산 삼칼슘 재료인 Biodentine$^{(R)}$, Theracal$^{(R)}$, ProRoot MTA$^{(R)}$의 압출강도를 측정하고 표면형태를 관찰하는 것이었다. 각각의 재료에 대해 샘플을 4개의 그룹으로 나누었다. 산성 조건 그룹은 pH 4.4, 5.4, 6.4의 부티르산 조건에서, 대조군 그룹은 pH 7.4의 인산완충식염수 조건에서 4일간 $37^{\circ}C$에서 보관하였다. 이후 압출강도를 측정하고 표면 형태를 분석하였다. Biodentine$^{(R)}$과 Theracal$^{(R)}$은 모든 산성 조건에서 ProRoot MTA$^{(R)}$ 보다 더 높은 압출강도를 보였고 pH 감소에 따라 압출강도가 감소하였다. 주사전자현미경을 이용한 관찰 결과 재료들 모두 산성 조건에서 표면 형태에 상당한 변화를 보였다. 결론적으로, Biodentine$^{(R)}$과 Theracal$^{(R)}$은 ProRoot MTA$^{(R)}$와 비교하여 더 높은 압출강도를 보였다. 또한 산성 조건은 규산삼칼슘 재료들의 압출강도와 미세구조를 약화시킬 수 있다.

The aim of this study was to evaluate the effect of a range of acidic pH values on the push-out bond strength and surface morphology of tricalcium silicate materials: Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$. The standardized lumens of root slices prepared from extracted single-root human teeth were filled with Biodentine$^{(R)}$, Theracal$^{(R)}$ and ProRoot MTA$^{(R)}$ according to manufacturer's instructions. The specimens were randomly divided into 4 groups (n = 20) for each material and then incubated for 4 days at $37^{\circ}C$; 3 acidic groups (butyric acid buffered at pH 4.4, 5.4, 6.4) and 1 control group (phosphate buffered saline solution at pH 7.4). The push-out bond strengths were then measured by using a universal testing machine and the surface morphology of each experimental group was analyzed by a scanning electron microscope. Biodentine$^{(R)}$ and Theracal$^{(R)}$ showed higher push-out bond strength compared with ProRoot MTA$^{(R)}$ after exposure to acidic pH values. A substantial change in the surface morphology of each material occurred after exposure to different pH values. In conclusion, the push-out bond strengths of Biodentine$^{(R)}$ and Theracal$^{(R)}$ are higher than the ProRoot MTA$^{(R)}$. Further the acidic environment weakens the push-out bond strength and microstructure of tricalcium silicate materials.

키워드

참고문헌

  1. Kokubo T, Kushitani H, Yamamuro T, et al. : Solutions able to reproduce invivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res, 24:721-734, 1990. https://doi.org/10.1002/jbm.820240607
  2. Camilleri J : Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater, 27:836-844, 2011. https://doi.org/10.1016/j.dental.2011.04.010
  3. Parirokh M, Torabinejad M. : Mineral trioxide aggregate : a comprehensive literature review - part I : chemical, physical, and antibacterial properties. J Endod, 36:16-27, 2010. https://doi.org/10.1016/j.joen.2009.09.006
  4. Torabinejad M, Parirokh M : Mineral trioxide aggregate : a comprehensive literature review - part II : leakage and biocompatibility investigations. J Endod, 36:190-202, 2010. https://doi.org/10.1016/j.joen.2009.09.010
  5. Han L, Okiji T : Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J, 44:1081-1087, 2011. https://doi.org/10.1111/j.1365-2591.2011.01924.x
  6. Laurent P, Camps J, About I, et al. : Induction of specific cell responses to a $Ca_3-SiO_5$-based posterior restorative material. Dent Mater, 24:1486-1494, 2008. https://doi.org/10.1016/j.dental.2008.02.020
  7. Vivan RR, Zapata RO, Gomes DM, et al. : Evaluation of the physical and chemical properties of two commercial and three experimental root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 110:250-256, 2010. https://doi.org/10.1016/j.tripleo.2010.04.021
  8. Namazikhah MS, Nekoofar MH, Dummer PM, et al. : The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J, 41:108-116, 2008.
  9. Shie MY, Huang TH, Ding SJ, et al. : The effect of a physiologic solution pH on properties of white mineral trioxide aggregate. J Endod, 35:98-101, 2009.
  10. Shokouhinejad N, Nekoofar MH, Dummer PM, et al. : Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod, 36:871-874, 2010. https://doi.org/10.1016/j.joen.2009.12.025
  11. Saghiri MA, Lotfi M, Ranjkesh B, et al. : Effect of pH on sealing ability of white mineral trioxide aggregate as a root-end filling material. J Endod, 34: 1226-1229, 2008. https://doi.org/10.1016/j.joen.2008.07.017
  12. Formosa LM, Mallia B, Camilleri J : Push-out bond strength of MTA with antiwashout gel or resins. Int Endod J, 47:454-462, 2014. https://doi.org/10.1111/iej.12169
  13. Chng HK, Islam I, Koh ET, et al. : Properties of a new root-end filling material. J Endod, 31:665-668, 2005. https://doi.org/10.1097/01.don.0000157993.89164.be
  14. Torabinejad M, Chivian N : Clinical applications of mineral trioxide aggregate. J Endod, 25:197-205, 1999. https://doi.org/10.1016/S0099-2399(99)80142-3
  15. Sarkar NK, Caicedo R, Kawashima I, et al. : Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod, 31:97-100, 2005. https://doi.org/10.1097/01.DON.0000133155.04468.41
  16. Goracci C, Tavares AU, Ferrari M, et al. : The adhesion between fiber posts and root canal walls : comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci, 112:353-361, 2004. https://doi.org/10.1111/j.1600-0722.2004.00146.x
  17. Elnaghy AM : Influence of Acidic Environment on Properties of Biodentine and White Mineral Trioxide Aggregate: A Comparative Study. J Endod, 40:953-957, 2014. https://doi.org/10.1016/j.joen.2013.11.007
  18. Gandolfi MG, Siboni F, Prati C : Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J, 45:571-579, 2012. https://doi.org/10.1111/j.1365-2591.2012.02013.x
  19. Gandolfi MG, Taddei P, Prati C, et al. : Development of the foremost light-curable calciumsilicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior. Dent Mater, 27:134-157, 2011. https://doi.org/10.1016/j.dental.2010.09.008
  20. Hachmeister DR, Schindler WG, Thomas DD, et al. : The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification. J Endod, 28:386-390, 2002. https://doi.org/10.1097/00004770-200205000-00010
  21. Atmeh AR, Chong EZ, Watson TF, et al. : Dentincement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res, 91:454-459, 2012. https://doi.org/10.1177/0022034512443068
  22. Wang Z, Ma J, Haapasalo M, et al. : Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J, 48:323-332, 2015. https://doi.org/10.1111/iej.12318
  23. Grech L, Mallia B, Camilleri J : Investigation of the physical properties of tricalcium silicate cementbased root-end filling materials. Dent Mater, 29:20-28, 2013.
  24. Camilleri J : Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater, 30:709-715, 2014. https://doi.org/10.1016/j.dental.2014.03.012