DOI QR코드

DOI QR Code

Demand forecasting for intermittent demand using combining forecasting method

결합 예측 기법을 이용한 간헐 수요에 대한 수요예측

  • Kwon, Ick-Hyun (Department of Industrial and Management Engineering, Inje University)
  • 권익현 (인제대학교 산업경영공학과)
  • Received : 2016.10.18
  • Accepted : 2016.12.22
  • Published : 2016.12.30

Abstract

In this research, we propose efficient demand forecasting scheme for intermittent demand. For this purpose, we first extensively analyze the drawbacks of the existing forecasting methods such as Croston method and Syntetos-Boylan approximation, then using these findings we propose the new demand forecasting method. Our goal is to develop forecasting method robust across many situations, not necessarily optimal for a limited number of specific situations. For this end, we adopt combining forecasting method that utilizes unbiased forecasting methods such as simple exponential smoothing and simple moving average. Various simulation results show that the proposed forecasting method performed better than the existing forecasting methods.

Keywords

References

  1. Altay, N., Rudisill, F. and Litteral, L. A., (2008), "Adapting Wright's modification of Holt's method to forecasting intermittent demand", International Journal of Production Economics, 111:389-408. https://doi.org/10.1016/j.ijpe.2007.01.009
  2. Armstrong, J. S., (2001), "Combining forecasts", In Principles of forecasting: a handbook for researchers and practitioners (Armstrong, J. S., Ed), 417-439, Kluwer Academic Publisher.
  3. Boylan, J. E. and Syntetos, A. A., (2007), "The accuracy of a Modified Croston procedure", International Journal of Production Economics, 107:511-517. https://doi.org/10.1016/j.ijpe.2006.10.005
  4. Brown, R. G., (1963), Smoothing, forecasting and prediction of discrete time series, Prentice-Hall.
  5. Clemen, R. T., (1989), "Combining forecasts: a review and annotated bibliography", International Journal of Forecasting, 5: 559-583. https://doi.org/10.1016/0169-2070(89)90012-5
  6. Croston, J. D., (1972), "Forecasting and stock control for intermittent demands", Operational Research Quarterly, 23, 289-304. https://doi.org/10.1057/jors.1972.50
  7. Eaves, A. H. C. and Kingsman, B. G., (2004), "Forecasting for the ordering and stock-holding of spare parts", Journal of the Operational Research Society, 55:431-437. https://doi.org/10.1057/palgrave.jors.2601697
  8. Gutierrez, R. S., Solis, A. O. and Mukhopadhyay, S., (2008), "Lumpy demand forecasting using neural networks", International Journal of Production Economics, 111:409-420. https://doi.org/10.1016/j.ijpe.2007.01.007
  9. Johnston, F. R. and Boylan, J. E.(1996), Forecasting for items with intermittent demand, Journal of the Operational Research Society, 47:113-121. https://doi.org/10.1057/jors.1996.10
  10. Silver, E. A., Pyke, D. F. and Peterson, R., (1998), "Inventory management and production planning and scheduling", John Wiley & Sons.
  11. Smart, C. N.(2002), "Accurate intermittent demand/inventory forecasting": new technologies and dramatic results, In: Proceeding of APICS International Conference, C-08.
  12. Strijbosch, L. W. G., Heuts, R. M. J. and van der Schoot, E. H. M.(2000), "A combined forecast-inventory control procedure for spare parts", Journal of the Operational Research Society, 51:1184-1192.
  13. Syntetos, A. A.(2001), Forecasting for intermittent demand, Unpublished Ph.D. thesis, Buckinghamshire Chilterns University College, Brunel University.
  14. Syntetos, A. A., Babai, M. Z., Dallery, Y. and Teunter, R., (2009), "Periodic control of intermittent demand items: theory and empirical analysis", Journal of the Operational Research Society, 60:611-618. https://doi.org/10.1057/palgrave.jors.2602593
  15. Syntetos, A. A. and Boylan, J. E., (2001), "On the bias of intermittent demand estimates", International Journal of Production Economics, 71:457-466. https://doi.org/10.1016/S0925-5273(00)00143-2
  16. Syntetos, A. A. and Boylan, J. E., (2005), "The accuracy of intermittent demand estimates", International Journal of Forecasting, 21:303-314. https://doi.org/10.1016/j.ijforecast.2004.10.001
  17. Syntetos, A. A. and Boylan, J. E.. (2010), "On the variance of intermittent demand estimates", International Journal of Production Economics, 128:546-555. https://doi.org/10.1016/j.ijpe.2010.07.005
  18. Systetos, A. A., Boylan, J. E. and Croston, J. D., (2005), "On the categorization of demand patterns", Journal of the Operational Research Society, 56, 495-503. https://doi.org/10.1057/palgrave.jors.2601841
  19. Syntetos, A. A., Boylan, J. E. and Disney, S. M.(2009), "Forecasting for inventory planning: a 50-year review", Journal of the Operational Research Society, 60: S149-S160. https://doi.org/10.1057/jors.2008.173
  20. Thompson, P. A., (1990), "An MSE statistic for comparing forecast accuracy across series", International Journal of Forecasting, 6:219-227. https://doi.org/10.1016/0169-2070(90)90007-X
  21. Teunter, R. H. and Sani, B., (2009), "On the bias of Croston's forecasting method", European Journal of Operational Research, 194:177-183. https://doi.org/10.1016/j.ejor.2007.12.001
  22. Zou, H. and Yang, Y., (2004), "Combining time series models for forecasting", International Journal of Forecasting, 20: 69-84. https://doi.org/10.1016/S0169-2070(03)00004-9