References
- Altay, N., Rudisill, F. and Litteral, L. A., (2008), "Adapting Wright's modification of Holt's method to forecasting intermittent demand", International Journal of Production Economics, 111:389-408. https://doi.org/10.1016/j.ijpe.2007.01.009
- Armstrong, J. S., (2001), "Combining forecasts", In Principles of forecasting: a handbook for researchers and practitioners (Armstrong, J. S., Ed), 417-439, Kluwer Academic Publisher.
- Boylan, J. E. and Syntetos, A. A., (2007), "The accuracy of a Modified Croston procedure", International Journal of Production Economics, 107:511-517. https://doi.org/10.1016/j.ijpe.2006.10.005
- Brown, R. G., (1963), Smoothing, forecasting and prediction of discrete time series, Prentice-Hall.
- Clemen, R. T., (1989), "Combining forecasts: a review and annotated bibliography", International Journal of Forecasting, 5: 559-583. https://doi.org/10.1016/0169-2070(89)90012-5
- Croston, J. D., (1972), "Forecasting and stock control for intermittent demands", Operational Research Quarterly, 23, 289-304. https://doi.org/10.1057/jors.1972.50
- Eaves, A. H. C. and Kingsman, B. G., (2004), "Forecasting for the ordering and stock-holding of spare parts", Journal of the Operational Research Society, 55:431-437. https://doi.org/10.1057/palgrave.jors.2601697
- Gutierrez, R. S., Solis, A. O. and Mukhopadhyay, S., (2008), "Lumpy demand forecasting using neural networks", International Journal of Production Economics, 111:409-420. https://doi.org/10.1016/j.ijpe.2007.01.007
- Johnston, F. R. and Boylan, J. E.(1996), Forecasting for items with intermittent demand, Journal of the Operational Research Society, 47:113-121. https://doi.org/10.1057/jors.1996.10
- Silver, E. A., Pyke, D. F. and Peterson, R., (1998), "Inventory management and production planning and scheduling", John Wiley & Sons.
- Smart, C. N.(2002), "Accurate intermittent demand/inventory forecasting": new technologies and dramatic results, In: Proceeding of APICS International Conference, C-08.
- Strijbosch, L. W. G., Heuts, R. M. J. and van der Schoot, E. H. M.(2000), "A combined forecast-inventory control procedure for spare parts", Journal of the Operational Research Society, 51:1184-1192.
- Syntetos, A. A.(2001), Forecasting for intermittent demand, Unpublished Ph.D. thesis, Buckinghamshire Chilterns University College, Brunel University.
- Syntetos, A. A., Babai, M. Z., Dallery, Y. and Teunter, R., (2009), "Periodic control of intermittent demand items: theory and empirical analysis", Journal of the Operational Research Society, 60:611-618. https://doi.org/10.1057/palgrave.jors.2602593
- Syntetos, A. A. and Boylan, J. E., (2001), "On the bias of intermittent demand estimates", International Journal of Production Economics, 71:457-466. https://doi.org/10.1016/S0925-5273(00)00143-2
- Syntetos, A. A. and Boylan, J. E., (2005), "The accuracy of intermittent demand estimates", International Journal of Forecasting, 21:303-314. https://doi.org/10.1016/j.ijforecast.2004.10.001
- Syntetos, A. A. and Boylan, J. E.. (2010), "On the variance of intermittent demand estimates", International Journal of Production Economics, 128:546-555. https://doi.org/10.1016/j.ijpe.2010.07.005
- Systetos, A. A., Boylan, J. E. and Croston, J. D., (2005), "On the categorization of demand patterns", Journal of the Operational Research Society, 56, 495-503. https://doi.org/10.1057/palgrave.jors.2601841
- Syntetos, A. A., Boylan, J. E. and Disney, S. M.(2009), "Forecasting for inventory planning: a 50-year review", Journal of the Operational Research Society, 60: S149-S160. https://doi.org/10.1057/jors.2008.173
- Thompson, P. A., (1990), "An MSE statistic for comparing forecast accuracy across series", International Journal of Forecasting, 6:219-227. https://doi.org/10.1016/0169-2070(90)90007-X
- Teunter, R. H. and Sani, B., (2009), "On the bias of Croston's forecasting method", European Journal of Operational Research, 194:177-183. https://doi.org/10.1016/j.ejor.2007.12.001
- Zou, H. and Yang, Y., (2004), "Combining time series models for forecasting", International Journal of Forecasting, 20: 69-84. https://doi.org/10.1016/S0169-2070(03)00004-9