DOI QR코드

DOI QR Code

네 점이 한 원 위에 있을 조건에 관한 교육적 고찰

An Educational Consideration on the Condition that Four Points lie on a Circle

  • 투고 : 2016.01.13
  • 심사 : 2016.05.14
  • 발행 : 2016.05.31

초록

In this study, we extracted the background meaning of the condition that four points lie on a circle, analyzed textbooks critically and proposed the orientation to improve the content in the textbook. As results, the condition has a realistic background meaning which is 'mathematical modeling of finding a fair location'. The condition has a mathematical background meanings which are 'a first complex situation distinguished from two points and three points', 'the condition described in the perspective of side and angle in order to overcome the disadvantages of the perpendicular bisectors context' and 'being possible to transfer more than five points'. However it is difficult to understand the reason why the condition is on four points in the current textbook. In addition, it is difficult to recognize the connectivity of a circumcenter of triangle. To overcome these problems, we proposed five orientations to improve the content in the textbook.

키워드

참고문헌

  1. 강완, 백석윤 (2007). 초등수학교육론. 파주: 동명사. (Kang, W., & Paik, S.Y. (2007). Elementary mathematics education theory. Paju: Dongmyeongsa.)
  2. 강흥규 (2003). Dewey의 경험주의 수학교육론 연구. 서울대학교 박사학위논문. (Kang, H.K. (2003). A study on Dewey's experientialism in mathematics education. Doctoral dissertation, SNU.)
  3. 권석일 (2006). 중학교 기하 교재의 '원론' 교육적 고찰. 박사학위논문, 서울대학교. (Kwon, S.I. (2006). A study on teaching of the elements of geometry in secondary school. Doctoral dissertation, SNU.)
  4. 김남희 (1997). 일반화의 의미와 구성에 대한 이해. 대한수학교육학회논문집 7(1), 445-458. (Kim, N.H. (1997). Understanding of the meaning and the construction of generalization. Journal of the Korea Society of Educational Studies in Mathematics, 7(1), 445-458.)
  5. 김동근 (2011). 학교수학에서 일반화에 관한 연구. 박사학위논문, 경상대학교. (Kim, D.G(2011). A study on generalization in school mathematics. Doctoral dissertation, GSNU.)
  6. 김부미, 정은선, 안연진 (2009). 역사발생적 원리에 따른 교수학습 모듈을 적용한 수행평가의 교수학적 효과 분석. 학교수학 11(3), 431-462. (Kim, B.M., Jeong, E.S., & An, Y.J. (2009). Pedagogical Effect of Learning-Teaching Module of Unit for the Logarithm According to Historico-Genetic Principle. School Mathematics, 11(3), 431-462.)
  7. 김성준, 문정화 (2006). 유형별 맥락문제의 적용과 그에 따른 유형별 선호도 조사. 한국학교수학회논문집 9(2), 141-161. (Kim, S.J., & Moon, J.H. (2006). A Study on the Application of Context Problems and Preference for Context Problems Types. Journal of the Korea School Mathematics Society, 9(2), 141-161.)
  8. 김원경, 백경호(2005). 고등학교 확률과 통계 영역에서 현실적 수학교육의 적용 효과. 수학교육 44(3), 435-456. (Kim, W.K., & Peck, K.H. (2005). Implementation effects of the Realistic Mathematics Education in High School Probability and Statistics. The Mathematical Education 44(3), 435-456.)
  9. 김창수 (2012). 일반화 과정과 그 정당화에서 '이해'의 완전성에 대한 연구: 산술, 기하, 조화평균을 중심으로. 수학교육 51(4), 377-393. (Kim, C.S. (2012). A study on the completeness of "the understanding" in the generalization process and justification -centered on the arithmetical, geometric and harmonic. The Mathematical Education 51(4), 377-393.)
  10. 민세영 (1997). 역사발생적 원리에 따른 로그단원의 지도에 관한 연구. 수학교육학연구 7(2), 381-396. (Min, S.Y. (1997). A Study on the Development of the School Mathematics according to the Histo-genetic Principle. The Journal of Education Research in Mathematics 7(2), 381-396.)
  11. 민세영 (2002). 역사발생적 수학 학습-지도 원리에 관한 연구. 박사학위논문, 서울대학교. (Min, S.Y.(2002). A study on historico-genetic principle of teaching and learning in mathematics. Doctoral dissertation, SNU.)
  12. 신항균 외 6명 (2013). 중학교 수학 3 교사용지도서. 서울: 지학사. (Sin, H,G., et al. (2013). Middle school mathematics 3 guidebook for teacher. Seoul: Jihaksa.)
  13. 우정호 (2000). 수학 학습-지도 원리와 방법. 서울: 서울대학교 출판부. (Woo. J.H. (2000). Principles and methods of learning-teaching mathematics . Seoul: Seoul National University Press.)
  14. 이강섭 외 10명 (2013). 중학교 수학 3 교사용지도서. 서울: 미래엔. (Lee, G.S. et. al. (2013). Middle school mathematics 3 guidebook for teacher. Seoul: Mirae N)
  15. 이무현 (1997). 기하학 원론 -평면기하 (Euclid 지음, 이무현 역). 서울: 교우사. (Lee, M.H. (1997). The elements of geometry - plane geometry. (Written by Euclid, translated by Lee, M.H.) Seoul: Kyowoo.)
  16. 장혜원 (2003). Clairaut의 <기하학 원론>에 나타난 역사발생적 원리에 대한 고찰. 수학교육학연구 13(3), 351-364. (Chang, H.W. (203). A study on the historico-genetic principle revealed in Clairaut's 〈Elements of Geometry>. The Journal of Education Research in Mathematics 13(3), 351-364.)
  17. 정은실 (1997). 초등학교 수학에서의 개연적 추리에 대한 연구. 대한수학교육학회논문집 7(1), 69-86. (Jeong, E.S.(1997). Study on the Plausible Reasoning in Elementary Mathematics. Journal of the Korea Society of Educational Studies in Mathematics 7(1), 69-86.)
  18. 조태근 외 4명 (2002). 중학교 수학 9-나 교사용 지도서. 서울: 금성출판사. (Jo, T.G. et. al. (2002). Middle school mathematics 9-Na guidebook for teacher. Seoul: Kumsung.)
  19. 황선욱 외 8명 (2013). 중학교 수학 3 교사용지도서. 서울: 좋은책 신사고. (Hwang, S.W. et. al. (2013). Middle school mathematics 3 guidebook for teacher. Seoul: Sinsago.)
  20. Brousseau, G. (1997). Theory of Didactical Situations in Mathematics (Didactique des Mathemaitques, 1970-1990) (N. Balacheff & M. Copper & R. Sutherland & V. Warfield, Ed. and Trans.), Dordrecht : Kluwer Academic Publishers.
  21. Byers, V., & Herscovics, N. (1977). Understanding school mathematics. Mathematics Teaching, 81.
  22. Cajori, F. (1917). A history of elementary mathematics with hints on methods of teaching. Revised and enlarged edition, New York: Macmillan. 정지호 역 (1983). 수학의 역사. 서울: 창원사.
  23. Clairaut, A. C. (1741). Elements de geometrie I, II. Gauthier-Villars et Cle, Eds.(1920). Paris: Libraires du bureau des longitudes de l'ecole polytechnique.
  24. Freudenthal, H. (1973). Mathematics As an Educational Task, Dordrecht: D. Reidel Publishing Company.
  25. Freudenthal, H. (1991). Revisiting mathematics education: china lectures. Dordrecht: Kluwer Academic Publishers.
  26. Polya, G. (1973). Mathematics and plausible reasoning 1. Princeton University Press.
  27. Skemp, R. R., (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
  28. Treffers, A. (1987). Three dimension: a model of goal and theory description in mathematics education-the wiscobas project. Dordrecht: Kluwer Academic Publishers.
  29. Villiers, M. D. (1994). The Role and Function of a Hierarchical Classification of Quadrilaterals. For the Learning of Mathematics 14(1), 11-18.