DOI QR코드

DOI QR Code

폼 타입 윅의 투과도를 예측하기 위한 해석 모델

Analytic Model for Predicting the Permeability of Foam-type Wick

  • 응호익롱 (영남대학교 기계공학부) ;
  • 변찬 (영남대학교 기계공학부)
  • Ngo, Ich-Long (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Byon, Chan (School of Mechanical Engineering, Yeungnam Univ.)
  • 투고 : 2016.01.22
  • 심사 : 2016.03.20
  • 발행 : 2016.06.01

초록

히트파이프에서 윅은 히트파이프의 열성능을 결정하는 데 중요한 역할을 한다. 여러 가지 형태의 윅 중 폼 타입 윅은 기공률과 유동 투과도가 높아서 윅의 모세관 펌핑 능력을 크게 향상시킬 수 있는 잠재능력을 갖고 있다고 평가된다. 본 논문에서는 폼 타입 윅의 투과도를 예측할 수 있는 모델을 광범위한 수치해석을 통해서 개발하였다. 제안된 관계식은 기존의 Kozeny-Carman 방정식을 확장한 형태를 갖고 있으며, Kozeny-Carman 계수들이 폼 타입 윅에 대해 기공률의 함수로 제시되었다. 제안된 관계식은 넓은 범위의 형상 변수에 대해서 기존의 실험 결과를 정확히 예측하는 것으로 드러났다. 폼 타입윅은 높은 기공률 때문에 기존 소결금속 윅의 모세관 성능을 획기적으로 향상시킬 수 있다.

Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman's equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.

키워드

참고문헌

  1. Bodla, K. K., Murthy, J. Y. and Garimella, S. V., 2013, "Evaporation Analysis in Sintered Wick Microstructures," Int J Heat Mass Tran, Vol. 61, pp. 729-741. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.038
  2. Faghri, A., 1995, Heat Pipe Science and Technology, Taylor & Francis, Washington DC.
  3. Wong, S.-C., Liou, J.-H. and Chang, C.-W., 2010, "Evaporation Resistance Measurement with Visualization for Sintered Copper-powder Evaporator in Operating Flat-plate Heat Pipes," Int J Heat Mass Tran, Vol. 53, No. 19-20, pp. 3792-3798. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.031
  4. Byon, C. and Kim, S. J., 2012, "Capillary Performance of Bi-porous Sintered Metal Wicks," Int J Heat Mass Tran, Vol. 55, No. 15-16, pp. 4096-4103. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.051
  5. Hwang, G. S., Kaviany, M., Anderson, W. G. and Zuo, J., 2007, "Modulated Wick Heat Pipe," Int J Heat Mass Tran, Vol. 50, No. 7-8, pp. 1420-1434. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.019
  6. Byon, C. and Kim, S. J., 2012, "Effects of Geometrical Parameters on the Boiling Limit of Biporous Wicks," Int J Heat Mass Tran, Vol. 55, No. 25-26, pp. 7884-7891. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.016
  7. Byon, C. and Kim, S. J., 2011, "The Effect of Meniscus on the Permeability of Micro-post Arrays," Journal of Micromechanics and Microengineering, Vol. 21, No. 11, pp. 115011. https://doi.org/10.1088/0960-1317/21/11/115011
  8. Li, C., Peterson, G. P. and Wang, Y., 2006, "Evaporation/Boiling in Thin Capillary Wicks (l)-Wick Thickness Effects," Journal of Heat Transfer, Vol. 128, No. 12, pp. 1312-1319. https://doi.org/10.1115/1.2349507
  9. Zhang, H. G., Yu, X. D. and Braun, P. V., 2011, "Three-dimensional Bicontinuous Ultrafast-charge and -discharge Bulk Battery Electrodes," Nat Nanotechnol, Vol. 6, No. 5, pp. 277-281. https://doi.org/10.1038/nnano.2011.38
  10. Taberna, P. L., Mitra, S., Poizot, P., Simon, P. and Tarascon, J. M., 2006, "High Rate Capabilities $Fe_3O_4$-Based Cu Nano-architectured Electrodes for Lithiumion Battery Applications," Nat Mater, Vol. 5, No. 7, pp. 567-573. https://doi.org/10.1038/nmat1672
  11. Rolison, D. R., Long, J. W., Lytle, J. C., Fischer, A. E., Rhodes, C. P., McEvoy, T. M., Bourg, M. E. and Lubers, A. M., 2009, "Multifunctional 3D Nanoarchitectures for Energy Storage and Conversion," Chemical Society Reviews, Vol. 38, No. 1, pp. 226-252. https://doi.org/10.1039/B801151F
  12. Dusseault, T. J., Gires, J., Barako, M. T., Yoonjin, W., Agonafer, D. D., Asheghi, M., Santiago, J. G. and Goodson, K. E. In Inverse Opals for Fluid Delivery in Electronics Cooling Systems, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2014 IEEE Intersociety Conference on, 27-30 May 2014; 2014; pp 750-755.
  13. Byon, C. and Kim, S. J., 2013, "The Effect of the Particle Size Distribution and Packing Structure on the Permeability of Sintered Porous Wicks," Int J Heat Mass Tran, Vol. 61, No. 0, pp. 499-504. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.025
  14. Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, Springer, Verlag New York, p 712.
  15. Carman, P. C., 1997, "Fluid flow Through Granular Beds," Chemical Engineering Research and Design, Vol. 75(Supplement), No. 0, pp. S32-S48. https://doi.org/10.1016/S0263-8762(97)80003-2
  16. Xu, P. and Yu, B., 2008, "Developing a New Form of Permeability and Kozeny-Carman Constant for Homogeneous Porous Media by Means of Fractal Geometry," Advances in Water Resources, Vol. 31, No. 1, pp. 74-81. https://doi.org/10.1016/j.advwatres.2007.06.003
  17. Ebrahimi Khabbazi, A., Ellis, J. S. and Bazylak, A., 2013, "Developing a New Form of the Kozeny-Carman Parameter for Structured Porous Media Through Lattice-Boltzmann Modeling," Computers & Fluids, Vol. 75, No. 0, pp. 35-41. https://doi.org/10.1016/j.compfluid.2013.01.008
  18. Nooruddin, H. A. and Hossain, M. E., 2011, "Modified Kozeny-Carmen Correlation for Enhanced Hydraulic Flow Unit Characterization," Journal of Petroleum Science and Engineering, Vol. 80, No. 1, pp. 107-115. https://doi.org/10.1016/j.petrol.2011.11.003
  19. Despois, J.-F. and Mortensen, A., 2005, "Permeability of Open-pore Microcellular Materials," Acta Materialia, Vol. 53, No. 5, pp. 1381-1388. https://doi.org/10.1016/j.actamat.2004.11.031
  20. Laschet, G., Kashko, T., Angel, S., Scheele, J., Nickel, R., Bleck, W. and Bobzin, K., 2008, "Microstructure Based Model for Permeability Predictions of Open-cell Metallic Foams Via Homogenization," Materials Science and Engineering: A, Vol. 472, No. 1-2, pp. 214-226. https://doi.org/10.1016/j.msea.2007.03.046