• Title/Summary/Keyword: 윅

Search Result 94, Processing Time 0.025 seconds

Comparison of the Heat transport Limitations for Screen Mesh Wick and Sintered Metal Wick Heat Pipes by Theoretical Analysis (이론적 해석에 의한 스크린 메쉬윅과 소결윅 히트파이프의 열수송 한계 비교)

  • Kim Keun-Bae;Kim Yoo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.267-274
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitations of screen mesh wick and sintered wick heat pipes was performed. The heat pipe diameter was 8mm and water was used for working fluid. For the 250 mesh, each capillary pressures and heat transport limitations, thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius (r$\_$c/), porosity ($\varepsilon$) and permeability (K). The wick capillary limitation was increased as the operating temperature and the wick thickness were increased, and generally the sintered wick showed higher heat transport limitations than that of the screen wick. The thermal resistance of the screen wick was higher than that of the sintered wick and both thermal resistances were linearly increased as the wick thickness was increased.

Analytic Model for Predicting the Permeability of Foam-type Wick (폼 타입 윅의 투과도를 예측하기 위한 해석 모델)

  • Ngo, Ich-Long;Byon, Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.391-396
    • /
    • 2016
  • Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman's equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.

Analysis of Heat Transport Limitations of the Heat Pipe for Structural Characteristics of Sintered Metal Wick (소결윅의 구조적 특성에 따른 히트파이프의 열수송 한계 분석)

  • Kim, Keun-Bae;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.97-103
    • /
    • 2005
  • In this paper, effects on the heat transport limitation of heat pipe by the wick structural factors were theoretically analyzed for the sintered-copper wick heat pipe. Uniformity of particle size and sintering process were acted as dominant factors on the pore distribution and wick porosity, and small deviations of the wick thickness and the pore size greatly affected the heat transport limitations of the heat pipe. Especially, slight variations of the wick thickness, mean particle radius and capillary radius along the vapor temperatures and inclination angles remarkably changed the capillary limitation of the heat pipe.

Analysis of Pressure Drop and Heat Loss in Liquid Sodium Circulation Wick of AMTEC (AMTEC의 소디움액체 순환윅에서 압력손실 및 열손실해석)

  • Lee, Ki-Woo;Lee, Wook-Hyun;Rhi, Seok-Ho;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.953-960
    • /
    • 2012
  • An AMTEC (alkali metal thermal electric converter) is a device that is used for the direct conversion of heat to electricity. Sodium is used as the working fluid, and its circulation is driven by a capillary wick. The wicks used for circulation include an evaporator wick, artery wick, and condenser wick, and each wick has a pressure drop because of the circulation of liquid and vapor. For the circulation of sodium, the capillary pressure of the evaporator wick must be greater than the total pressure drop in the wicks. In this study, the pressure drop in the evaporator wick, artery wick, and condenser wick and the heat loss from the evaporator to the condenser through the artery wick were analyzed for the design of a 100 W AMTEC prototype. It was found that a particle diameter of 10 ${\mu}m$ is suitable for the evaporator wick to maintain a capillary pressure greater than total pressure drop in the circulation loop.

Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe (소결윅 히트파이프의 열수송 한계에 관한 이론적 해석)

  • Kim Keun-Bae;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitation of a copper powder sintered wick heat pipe was performed. The heat pipe diameter was 8mm and water was used for working fluid. The particle diameter was classified by 5 different meshes, and each capillary pressures and heat transport limitations. thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius($r_c$), porosity($\varepsilon$), Permeability (K). The wick capillary limitation was increased according as the particle diameter and the wick thickness and the operating temperature were increased. As the porosity and the capillary radius were larger. then the heat transport limitation was higher. The thermal resistance was greatly increased according as the wick thickness was increased.

Theoretical Analysis of Heat Transportation Limitation by Porosity of Wick in Screen Mesh Wick Heat Pipe (스크린메쉬윅 히트파이프에서 윅의 기공율변화에 따른 열수송한계의 이론적 고찰)

  • Lee, Ki-Woo;Park, Ki-Ho;Chun, Won-Pyo;Lee, Wook-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1-6
    • /
    • 2003
  • The purpose of the present study is to investigate the capillary heat transportation limitation in heat pipe according to the change of screen mesh wick porosity. Diameter of pipe was 6 mm, and mesh numbers are 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of wick porosity and mesh number, the capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, and capillary heat transportation limitation are analyzed by theoretical design method of a heat pipe. As some results, the capillary heat transportation limitation in screen mesh wick heat pipe is largely affected by wick porosity and mesh number.

  • PDF

A study on the improvement of the heat pipe performance with non metallic circumferential wick (非金屬 環狀윅을 갖는 히이트파이프 性能개선에 관한 연구)

  • 서정일;장영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.713-723
    • /
    • 1986
  • The purpose of this research was to study the heat transfer characteristics of heat pipe which used non-metallic(SiO$_{2}$), circumferential wick and meshed slab wick as ADI method and experimental results. Compared wick experimental data and results by ADI method showed the good agreement and ADI method was utilized in pridicting the performance of heat pipe. Also, ADI method was applied to predict heat pipe performance according to the various volume ratios of metallic bond. The heat transfer characteristics of heat pipe could be predicted by heat flux and superheat term below the maximum heat flux limit. According to the addition ratio of metallic bond, heat transfer ratio could be improved as 2-3 times and when heat conductivity ratio(K$_{b}$/K$_{a}$) was increased at 4-12 ratio, heat transfer was in creased as 1.7-2.4 times, and the prediction of heat transfer could be show as exponential type. In producting non-metallic wick used to low heat pipe, metallic bond which is the conductivity of good quality and enduring for high temperature will be improved as in important problem.

Video Coding using Multiple Description Transform Coding (다중기술 변환기법을 이용한 비디오 부호화 알고리즘)

  • 류상욱;양창모;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.305-308
    • /
    • 2000
  • IP 네트웍을 통해 실시간 비디오를 전송할 때 네트윅 특성을 고려하여 비디오 데이터를 부호하면 패킷 손실로 인한 품질 열화를 최소화하여 더 좋은 품질의 비디오를 얻을 수 있다. 이를 위해 현재 네트윅의 정보를 빠르고 정확하게 얻어내는 메커니즘과 부호화 변수를 네트윅 상황에 적응적으로 조절하여 패킷 손실에 강인한 압축 및 전송 메커니즘의 두 가지 기능이 요구된다. 첫번째 메커니즘은 RTP(Real Time Transport Protocol)을 통해 구현될 수 있으며, 두 번째 메커니즘을 위해 본 연구에서는 다중기술 변환부호화(Multiple Description Transform Coding) 기법을 적용한 비디오 부호화 알고리즘을 제안한다. RTP에서 제공하는 RTCP(Real Time Control Protocol) 정보를 이용하여 현재 네트웍 정보를 얻을 수 있으며, 다중기술 변환부호화 기법을 이용하여 현재의 패킷 손실률에서 최적의 품질을 보장하도록 부호화 변수를 조절할 수 있다. 본 논문에서는 다중기술 변환부호화 기법을 비디오 부호화에 적용하여 순수 비디오 정보에 추가되는 잉여 정보량과 패킷 손실에 대한 강인성 사이의 관계를 도출함으로써 다중기술 변환부호화 기법이 네트웍 적응적 부호화 방식에 적합한 방식임을 제시한다.

  • PDF

A Study on Operating Characteristics and Development of Woven-Wired Wick Heat Pipe (편조 윅 히트파이프의 개발과 작동특성에 관한 연구)

  • Moon, Seok-Hwan;Choi, Choon-Gi;Hwang, Gunn;Choy, Tae-Goo
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.54-59
    • /
    • 2000
  • 전자부품 및 시스템의 고속/고밀도화 추세에 따라 발열밀도가 계속증가하고 있다. 최근 팬티엄 II 급이상의 노트북 컴퓨터의 CPU에서는 칩당 발열량이 10W 이상으로 증가하고 있고 패키징 공간의 제한 때문에 소형히트파이프를 이용한 냉각이 많이 적용되고 있다. 본 연구에서는 모세압구동력이 크고 생산성등이 고려된 편조 형태의 새로운 윅을 개발하였으며 , 노트북 컴퓨터의 CPU 등 소형 전자부품냉ㄱ가에 적용가능한 직경 3, 4 mm 히트파이프를 설계 및 제작하였다. 직경 3, 4 mm Miniature Heat Pipe (이하 MHP) 의 작동특성은 일반적인 중형히트파이프와 다르므로 MHP 의 열전달 특성 및 작동성능에 미치는 각종 인자들의 영향을 파악하고자 성능시험을 수행하였다. 고려된 작동인자로는 작동유체 충전률, 전체 파이프길이 및 증발부, 응축부길이, 설치 경사각, 윅의 가닥수, 열부하 등이다. 작동인자의 영향과 관련된 연구결과는 향후 패키징을 위한 응용연구의 기초자료로 활용할 수 있을 것이다.

  • PDF

Development of the Structure for Enhancing Capillary Force of the Thin Flat Heat Pipe Based on Extrusion Fabrication (압출형 박판 히트파이프의 모세관력 향상을 위한 구조 개발)

  • Moon, Seok Hwan;Park, Yoon Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.755-759
    • /
    • 2016
  • The use of heat pipes in the electronic telecommunication field is increasing. Among the various types of heat pipes, the thin flat heat pipe has relatively high applicability compared with the circular heat pipe in the electronic packaging application. The thin flat heat pipe based on extrusion fabrication has a simple capillary wick structure consisting of rectangular cross sectional grooves on the inner wall of the pipe. Although the groove serves as a simple capillary wick, and many such grooves are provided on the inner wall, it is difficult for the grooves to realize a sufficiently high capillary force. In the present study, a thin flat heat pipe with a wire bundle was developed to overcome the drawback of poor capillary force in the thin flat heat pipe with grooves, and was evaluated by conducting tests. In the performance test, the thin flat heat pipe with the wire bundle showed a lower thermal resistance of approximately 3.4 times, and a higher heat transfer rate of approximately 3.8 times with respect to the thin flat heat pipe with grooves as the capillary wick respectively. The possibility of using the wire bundle as a capillary wick in the heat pipe was validated in the present study; further study for commercializing this concept will be taken up in the future.