DOI QR코드

DOI QR Code

사각 공동 및 채널이 형성된 마이크로 구조 표면에서의 수조비등 특성연구

Pool Boiling Characteristics on the Microstructured surfaces with Both Rectangular Cavities and Channels

  • 김동억 (경북대학교 정밀기계공학과) ;
  • 박수청 (포항공과대학교 기계공학과) ;
  • 유동인 (포항공과대학교 첨단원자력공학부) ;
  • 김무환 (한국원자력안전기술원) ;
  • 안호선 (인천대학교 기계시스템공학부) ;
  • 명병수 (경북대학교 정밀기계공학과)
  • Kim, Dong Eok (Dept. of Precision Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Park, Su Cheong (Dept. of Mechanical Engineering, POSTECH) ;
  • Yu, Dong In (Div. of Advanced Nuclear Engineering, POSTECH) ;
  • Kim, Moo Hwan (Korea Institute of Nuclear Safety(KINS)) ;
  • Ahn, Ho Seon (Div. of Mechanical System Engineering, Incheon Nat'l Univ.) ;
  • Myung, Byung-Soo (Dept. of Precision Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2015.01.16
  • 심사 : 2016.05.01
  • 발행 : 2016.06.01

초록

사각공동 및 채널이 형성된 마이크로구조 표면을 활용하여 수조비등 임계열유속에 대한 중력 및 모세관 압력의 영향에 대해 연구하였다. 마이크로 공동구조는 모세관 압력에 의한 액체유동을 억제하는 역할을 하였고, 마이크로 채널구조는 비등표면으로의 1차원적인 액체유동을 유발하는데 기여하였다. 이를 통해 임계열유속과 모세관 유동의 상관관계를 정량화할 수 있었다. 비등표면으로의 액체공급을 위한 원동력은 중력수두 및 모세관 압력에 의해 유발될 수 있다. 본 연구에서는 수조비등 실험 및 가시화 데이터의 분석을 통해 수조비등 표면에서의 핵비등을 유지할 수 있는 액체공급은 중력 수두 및 모세관 압력과 밀접한 상관관계를 가지고 있음을 확인할 수 있었다.

Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

키워드

참고문헌

  1. Cooke, D. and Kandlikar, S. G., 2012, "Effect of Open Microchannel Geometry on Pool Boiling Enhancement," Int. J. Heat Mass Transfer, Vol. 55, No. 4, pp. 1004-1013. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.010
  2. Yao, Z., Lu, Y-W. and Kandlikar S. G., 2012, "Pool Boiling Heat Transfer Enhancement Through Nanostructures on Silicon Microchannels," J. Nanotech. Eng. Med., Vol. 3, No. 3, 031002. https://doi.org/10.1115/1.4007425
  3. Chu, K. H., Joung, Y. S., Enright, R., Buie, C. R. and Wang, E. N., 2013, "Hierachically Structured Surfaces for Boiling Critical Heat Flux Enhancement," Appl. Phys. Lett., Vol. 102, No. 15, 151602. https://doi.org/10.1063/1.4801811
  4. Kutateladze, S. S., 1948, "On the Transition to Film Boiling Under Natural Convection," Kotloturbostroenie, Vol. 3, pp. 152-158
  5. Zuber, N., 1959, "Hydrodynamic Aspects of Boiling Heat Transfer," Ph. D. thesis, UCLA, USA.
  6. Haramura, Y. and Katto, Y., 1983, "A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids," Int. J. Heat Mass Transfer, Vol. 26, No. 3, pp. 389-399.
  7. Liaw, S. P. and Dhir, V. K., 1986, "Effect of Surface Wettability on Transition Boiling Heat Transfer from a Vertical Surface," Proceeding of 8th International Heat Transfer Conference, Vol. 4, pp. 2031-2036.
  8. Ramilison, J. M., Sadasivan P. and Lienhard, H. H., 1992, "Surface Factors Influencing Burnout on Flat Heaters," J. Heat Transfer, Vol. 114, No. 1, pp. 287-290. https://doi.org/10.1115/1.2911261
  9. Tanaka, Y., Hidaka, S., Cao, J. M., Nakamura, T., Yamamoto, H., Masuda, M. and Ito. T., 2005, "Effect of Surface Wettability on Boiling and Evaporation," Energy, Vol. 30, No. 2, pp. 209-220. https://doi.org/10.1016/j.energy.2004.05.004
  10. Nikolayev, V. S. and Beysens, D. A., 1999, "Boiling Crisis and Non-equilibrium Drying Transition," Europhys. Lett., Vol. 47, No. 3, p. 345. https://doi.org/10.1209/epl/i1999-00395-x
  11. Nikolayev, V. S., Chatain, D., Garrabos, Y. and Beysens, D. A., 2006, "Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis," Phys. Rev. Lett., Vol. 97, 184503. https://doi.org/10.1103/PhysRevLett.97.184503
  12. Kandlikar, S. G., 2001, "A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation," J. Heat Transfer, Vol. 123, No. 6, pp. 1071-1079. https://doi.org/10.1115/1.1409265
  13. Chu. K. H., Enright, R. and Wang, E. N., 2012, "Structured Surfaces for Enhanced Pool Boiling Heat Transfer," Appl. Phys. Lett., Vol. 100, No. 24, 241603. https://doi.org/10.1063/1.4724190
  14. Park. S. D., Lee, S. W., Kang, S., Bang, I. C., Kim, J. H., Shin, H. S. and Lee, D. W., 2010, "Effects of Nanofluids Containing Graphene/Graphene-oxide Nanosheets on Critical Heat Flux," Appl. Phys. Lett., Vol. 97, No. 2, 023103. https://doi.org/10.1063/1.3459971
  15. Ahn, H. S., Kim, J. M., Park, C. Jang, J. W., Lee, J. S., Kim, H., Kaviany M. and Kim, M. H., 2013, "A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure Duting Boiling, Sci. Rep., Vol. 3, 1960. https://doi.org/10.1038/srep01960
  16. Kim. H. D. and Kim, M. H., 2007, "Effect of Nanoparticle Deposition on Capillary Wicking that Influences the Critical Heat Flux in Nanofluids," Appl. Phys. Lett., Vol. 91, No. 1, 014104. https://doi.org/10.1063/1.2754644
  17. Rahman M. M., Oleceroglu, E. and McCarthy, M., 2014, "Role of Wickability on the Critical Heat Flux of Structured Superhydrophobic Surfaces," Langmuir, Vol. 30, No. 37, pp. 11225-11234. https://doi.org/10.1021/la5030923
  18. Kim, B. S., Lee, H., Shin, S., Choi, G. and Cho, H. H., 2014, "Interfacial Wicking Dynamics and its Impact on Critical Heat Flux of Boiling Heat Transfer," Appl. Phys. Lett., Vol. 105, No. 19, 191601. https://doi.org/10.1063/1.4901569
  19. Park, S. D. and Bang, I. C., 2014, "Experimental Study of a Universal CHF Enhancement Mechanism in Nanofluids Using Hydrodynamic Instability," Int. J. Heat Mass Transfer, Vol. 70, pp. 844-850. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.066
  20. Kim. D. E., Yu, D. I., Park, S. C., Kwak, H. J. and Ahn, H. S., 2015, "Critical Heat Flux Triggering Mechanism on Micro-structured Surfaces: Coalesced Bubble Departure Frequency and Liquid Furnishing Capability," Int. J. Heat Mass Transfer, Vol. 91, pp. 1237-1247. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.065