DOI QR코드

DOI QR Code

Numerical Investigation on Oil Spill from Damaged Riser

손상된 라이저로부터 유출된 기름 확산에 대한 수치해석

  • Kim, Hyo Ju (Department of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Lee, Sang Chul (Department of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Park, Sunho (Department of Ocean Engineering, Korea Maritime and Ocean University)
  • 김효주 (한국해양대학교 해양공학과) ;
  • 이상철 (한국해양대학교 해양공학과) ;
  • 박선호 (한국해양대학교 해양공학과)
  • Received : 2015.12.07
  • Accepted : 2016.03.14
  • Published : 2016.05.25

Abstract

When a riser is damaged, the oil spills to sea. Oil spills cause huge economic losses as well as a destruction of the marine environment. To reduce losses, it is needed to predict spilled oil volume from risers and the excursion of the oil. The present paper simulated the oil spill for a damaged riser using open source libraries, called Open-FOAM. To verify numerical methods, jet flow and Rayleigh-Taylor instability were simulated. The oil spill was simulated for various damaged leak size, spilled oil volume rates, damaged vertical locations of a riser, and current speeds. From results, the maximum excursion of the spilled oil at the certain time was predicted, and a forecasting model for various parameters was suggested.

해양에서 시추작업 중 라이저가 손상되어 기름유출이 발생하면 경제적인 피해 뿐 아니라 해양환경에 막대한 피해를 가져오게 되므로 사고 발생 시 신속하게 사고에 대처해야 될 뿐만 아니라 초기의 기름 유출량 및 확산 정도를 파악하는 것이 중요하다. 본 연구에서는 소스코드가 공개된 전산유체역학 라이브러리인 OpenFOAM을 이용하여 손상된 라이저로 부터 기름이 유출되는 현상을 해석하였다. 수치방법을 검증하기 위해 제트 유동과 밀도 차에 의한 확산 문제인 Rayleigh-Taylor instability를 해석하였다. 라이저의 손상된 크기, 기름 유출량, 손상된 위치, 해류의 속도를 변화시키며 해석하였다. 해석 결과 기름이 유출 될 경우 수면에 도달 할 때까지 이동한 거리 및 시간을 예측하여 기름 확산에 대비할 수 있는 가이드라인을 제시하였다.

Keywords

References

  1. Biksey, T.M., Schultz, A.C., Bernhardt A. and Marion, B. and Peterson, C., 2010, "Ecological and human health risk assessment", Water. Environ. Res., 2067-2094.
  2. He, X., Chen, S. and Zhang, R., 1999, "A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability", J. Comput. Phys., Vol. 152, No. 2, 642-663. https://doi.org/10.1006/jcph.1999.6257
  3. Hieu, P.D., Katsutoshi, T. and Ca, V.T., 2004, "Numerical simulation of breaking waves using a two-phase flow model", Appl. Math. Model., Vol. 28, No. 11, 983-1005. https://doi.org/10.1016/j.apm.2004.03.003
  4. Hirt, C.W. and Nichols, B.D., 1981, "Volume of fluid (VOF) method for the dynamics of free boundaries", J. Comput. Phys., Vol. 39, No. 1, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  5. Hoffmann, A.E., Crump, J.S. and Hocott, C.R., 1953, "Equilibrium constants for a gas-condensate system", J. Pet. Tech., Vol. 5, No. 1, pp. 219-228. https://doi.org/10.2118/953219-G
  6. Launder, B.E. and Spalding, D.B., 1972, "Lectures in Mathematical Models of Turbulence", Academic Press, London, Uk.
  7. Li, W., Pang, Y., Lin, J. and Liang, X., 2013, "Computational Modeling of Submarine Oil Spill with Current and Wave by FLUENT", Res. J. Appl. Sci. Eng. Technol., Vol. 5, No. 21, 5577-5082.
  8. Park, S., Park, S.W., Rhee, S.H., Lee, S.B., Choi J.E. and Kang, S.H., 2013, "Investigation on the wall function implementation for the prediction of ship resistance", Int. J. Nav. Archit. Ocean Eng., Vol. 5, No. 1, 33-46. https://doi.org/10.3744/JNAOE.2013.5.1.033
  9. Roohi, E., Pendar, M.R. and Rahimi, A., 2015, "Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models", Appl. Math. Model., Vol. 40, No. 1, 542-564. https://doi.org/10.1016/j.apm.2015.06.002
  10. Masutani, S.M. and Adams, E.E., 2002, "Expreimental study of multi-phase plumes with application to deep ocean oil spills", Final Report, University of hawaii.
  11. Versteeg, H.K. and Malalasekera, W., 1995, "An introduction to computational fluid dynamics the finite volume method". Person Education Limited, London, Uk.
  12. Wang, C., Chen, B., Zhang, B., He, S. and Zhao, M., 2013, "Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China", Mar. Pollut. Bull., Vol. 71, No. 1-2, 64-68. https://doi.org/10.1016/j.marpolbul.2013.03.034
  13. White, F.M., 2006, "Viscous Fluid Flow third edition". McGraw-Hill, New York, USA.
  14. Wygnanski, I. and Fiedler, H., 1969, "Some measurements in the self-preserving jet", J. Fluid Mech., Vol. 38, No. 3, 557-612.
  15. Zhu, H., Lin, P. and Pan, Q., 2014, "A CFD (computational fluid dynamic) simulation for oil leakage from damaged submarine pipeline", Energy, Vol. 64, 887-899. https://doi.org/10.1016/j.energy.2013.10.037