DOI QR코드

DOI QR Code

Optimization of Hot-water Extraction Conditions of Polyphenolic Compounds from Lipid Extracted Microalgae

탈지미세조류로부터 폴리페놀 생산 증대를 위한 열수추출 조건 최적화

  • Choi, Kanghoon (Department of Food Science, Sunmoon University) ;
  • Lee, Jihyun (Department of Food Science, Sunmoon University) ;
  • Jo, Jaemin (Department of Food Science, Sunmoon University) ;
  • Shin, Seulgi (Department of Food Science, Sunmoon University) ;
  • Kim, JinWoo (Department of Food Science, Sunmoon University)
  • Received : 2016.01.22
  • Accepted : 2016.02.05
  • Published : 2016.06.01

Abstract

The search for natural antioxidants as alternatives to synthetic products is growing. Microalgae have emerged as a source of natural antioxidants with significant and diverse health-promoting properties. In this study, the effects of hot-water extraction conditions on total polyphenol compounds (TPC) production were investigated for lipid extracted microalgae (LEA). In order to enhance the polyphenol productivity, the extraction variables including solvents, temperature, time and ethanol concentration were optimized. The results showed hot-water extraction provided a higher extraction efficiency than the organic solvents and extraction at high temperatures showed a better extraction efficiency. While hot-water extract showed a higher extraction efficiency compared to 98% ethanol extraction, the mixture of water and ethanol (40:60 v/v) showed the highest production of polyphenols. The maximum polyphenols of 3.35 mg GAE (gallic acid equivalent)/g DM were obtained at the optimized extraction time of 10 min, $100^{\circ}C$ and 40% ethanol, respectively. Although Tetraselmis KCTC 12236BP was preprocessed by hexane to remove lipid for bio-diesel production, the results showed LEA contains relatively high level of polyphenols compared to untreated microalgae which can be used in the production of value-added materials. The predictions obtained from the developed Peleg's model were compared with the experimental data under the same operating conditions. The predicted and experimental data were consistent, indicating the reliability of the model.

합성 항산화제에 대한 대체제로 천연 항산화제에 대한 연구가 활발히 진행되고 있으며 미세조류는 천연 항산화제의 원료로 많은 관심을 받고 있다. 본 연구에서는 탈지미세조류에서 총 폴리페놀(TPC) 추출증대를 위해 추출용매, 온도, 시간, 고액비율과 에탄올 첨가 농도 최적화를 수행하였다. 열수와 유기용매 추출성능을 비교했을 때, 열수추출이 유기용매 보다 우수한 성능을 보였으며 온도 증가에 따라 추출성능도 비례하여 증가함을 보였다. 열수에 의한 추출이 에탄올 용액 추출(>98%)에 비해 우수한 성능을 보였으며40% 에탄올 용액을 이용한 열수 추출이 가장 우수한 추출 효과를 보였다. 추출조건10 min, $100^{\circ}C$, 40% 에탄올 열수추출에서 최대 폴리페놀 농도인 3.35 mg GAE (gallic acid equivalent)/g DM을 얻을 수 있었다. 지질 추출을 위한 유기용매 전처리 공정이 선수행 되었음에도 불구하고 탈지미세조류(Tetraselmis KCTC 12236BP)의 폴리페놀 농도가 다른 탈지이전 미세조류와 동등한 수준임을 확인할 수 있어 탈지미세조류가 천연 폴리페놀의 원료로서 적합함을 확인 할 수 있었다. 또한, 고액추출을 모사하기 위해 Peleg 모델을 이용해 예측한 폴리페놀 농도가 실험에 의해 얻어진 값과 높은 일치도를 보임으로 모델을 이용한 모사가 폴리페놀 추출 모사에 유용함을 증명할 수 있었다.

Keywords

References

  1. Jang, S. Y. and Kim, J. S., "Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw," Korean Chem. Eng. Res., 52, 430-435(2014). https://doi.org/10.9713/kcer.2014.52.4.430
  2. Sindhu, R., Binod, P. and Pandey, A., "Biological Pretreatment of Lignocellulosic Biomass - An Overview," Bioresource Technol., 199, 76-82(2016). https://doi.org/10.1016/j.biortech.2015.08.030
  3. Ryu, Y. J., Seong, D. H., Lim, S. M. and Lee, C. G., "Optimization of Lipid Extraction Methods and Biodiesel Production from Dunaliella tertiolecta," Korean Soc. New Renewable Energy, 5, 96-96(2013).
  4. Kang, S. K., Kim, S. W. and Lee, J. W., "Optimization of Cross Flow Filtration System for Dunaliella tertiolecta and Tetraselmis sp. Microalgae Harvest," Korean J. Chem. Eng., 32, 1377-1380(2015). https://doi.org/10.1007/s11814-014-0343-5
  5. Park, J. N., Ali-Nehari, A., Woo, H. C. and Chun, B. S., "Thermal Stabilities of Polyphenols and Fatty Acids in Laminaria japonica Hydrolysates Produced Using Subcritical Water," Korean J. Chem. Eng., 29, 1604-1609(2012). https://doi.org/10.1007/s11814-012-0051-y
  6. Chon, S. U., Kim, D. K. and Kim, Y, M., "Phenolics Content and Antioxidant Activity of Sprouts in Several Legume Crops," Korean J. Plant Resour., 26, 159-168(2013). https://doi.org/10.7732/kjpr.2013.26.2.159
  7. Milutinovic, M., Radovanovic, N., corovic, M., Siler-Marinkovic, S., Rajilic-Stojanovic, M. and Dimitrijevic-Brankovic, S., "Optimisation of Microwave-assisted Extraction Parameters for Antioxidants from Waste Achillea millefolium Dust," Ind. Crops Prod., 77, 333-341(2015). https://doi.org/10.1016/j.indcrop.2015.09.007
  8. Bucic-Kojic, A., Planinic, M., Tomas, S., Bilic, M. and Velic D., "Study of Solid-liquid Extraction Kinetics of Total Polyphenols from Grape Seeds," J. Food Eng., 81, 236-242(2007). https://doi.org/10.1016/j.jfoodeng.2006.10.027
  9. Jung, J. K., Jung, B. R., Shin, B. Y. and Bang, M. A., "Polyphenol Analysis of the Extracts from Allium hookeri by Different Pretreatment," Plant Resour. Soc. Korea., 5, 148-141(2013).
  10. Kim, Y. S., Kim, R., Moon, J. H., Ji, J. R., Choi, H. D. and Park, Y. K., "Optimization of Extraction Conditions of Polyphenolic Compounds from Apple Pomace by Response Surface Methodology," Korean J. Food SCI. Technol., 41, 245-250(2009).
  11. Lee, D. W., Lee, S. Y., Chung, H. S., Choi, Y. H., Im, D. S. and Lee, Y. G., "Optimization of a Process for Extraction of Petasin from Petasites japonicus Leaves by Response Surface Methodology," J. Life Sci., 23, 1360-1364(2013). https://doi.org/10.5352/JLS.2013.23.11.1360
  12. Goiris, K., Muylaert, K., Fracye, I., Foubert, I., Brabanter, J. and Cooman, L., "Antioxidant Potential of Microalgae in Relation to Their Phenolic and Carotenoid Content," J. Appl. Phycol., 24, 1477-1486(2012). https://doi.org/10.1007/s10811-012-9804-6

Cited by

  1. Chlorella saccharophila 배양 최적화 및 유용물질의 생산 vol.55, pp.1, 2016, https://doi.org/10.9713/kcer.2017.55.1.74
  2. 커피박으로부터 생리활성물질 생산 증대를 위한 열수추출 공정 개발 vol.55, pp.3, 2017, https://doi.org/10.9713/kcer.2017.55.3.358
  3. Chitosan as a Flocculant: An Approach to Improve its Solubility for Efficient Harvesting of Microalgae vol.55, pp.4, 2016, https://doi.org/10.9713/kcer.2017.55.4.530
  4. 좁은잎산사나무 열매 추출물의 효능에 관한 연구 vol.31, pp.6, 2016, https://doi.org/10.9799/ksfan.2018.31.6.775
  5. 나문재(Suaeda glauca (Bunge) Bunge) 추출물과 분획물의 효능에 관한 연구 vol.32, pp.6, 2016, https://doi.org/10.9799/ksfan.2019.32.6.581
  6. Quality Characteristics of Senior-Friendly Gelatin Gels Formulated with Hot Water Extract from Red Maple Leaf as a Novel Anthocyanin Source vol.10, pp.12, 2016, https://doi.org/10.3390/foods10123074