DOI QR코드

DOI QR Code

무기계 MnOx-WO3-TiO2 나노분말의 표면특성 및 자기마모형 수지 적용성 평가

Surface Characteristics and Antifouling Performance of Inorganic MnOx-WO3-TiO2 Nanopowder for Self-polishing Copolymer Paint Applications

  • 신병길 (부산대학교 조선해양플랜트글로벌핵심연구센터) ;
  • 박현 (부산대학교 조선해양플랜트글로벌핵심연구센터)
  • Shin, Byeongkil (Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University) ;
  • Park, Hyun (Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University)
  • 투고 : 2016.03.04
  • 심사 : 2016.04.27
  • 발행 : 2016.04.30

초록

선박 및 해양구조물에서의 생물학적 오손을 방지하기 위하여 나노크기의 $MnO_x-WO_3-TiO_2$ 분말을 졸겔법으로 합성하여 특성을 제어하였고, 입자의 결정과 미세구조 등 분체특성 평가를 실시하였다. 자기마모형 방오도료의 안료에 적용하기 위하여 수지에 첨가된 $TiO_2$계 나노분말 안료의 함량에 따른 표면특성 및 방오성능을 확인하였다. $TiO_2$계 안료의 분체특성으로 비표면적은 약 $90m^2/g$, 입자크기는 약 100 ~ 150 nm을 보였다. 텅스텐 산화물은 망간산화물과 티타늄산화물과 상관관계를 통해, 삼원계 분체가 분체특성 및 표면특성이 우수하였다. 망간산화물의 첨가는 독특한 산화환원 특성으로 인하여 방오성능을 증가시키고, 텅스텐 산화물은 안료의 분체특성을 향상시킴으로, 안료와 수지의 비율을 조절하여 분산성, 표면특성 및 방오성능을 제어하였다. 그 결과로, 분산성 및 표면특성에 있어서 1, 5 wt. % 안료가 첨가된 것이 일부 우수하였으나, 5개월 동안의 해상침지시험에서는 2 wt. % 함유된 시편이 높은 방오성능을 보여 해양구조물의 방오안료 적용가능성을 확인하였다.

The $MnO_x-WO_3-TiO_2$ nanoscale powders were synthesized by sol-gel method in order to prevent the biological fouling on the ships and offshore structures. Powder characteristics and antifouling performance were investigated with respect to the crystalline, microstructure and surface property for application in self-polishing copolymer resins. The high antifouling activity of $TiO_2$-system biocide was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics. Based on their physio-chemical characterizations, the specific surface areas of powders were about $90m^2/g$ and the grain size was in the region 100 ~ 150 nm. Powder characteristics and surface properties were improved by the addition of $WO_3$. Antifouling performance were analyzed according to their surface properties and static immersion tests to determine the effects of the $TiO_2$-system compounds. The surface of 2 wt. % added sample was clean for 5 month. This may be attributed to the ability of $MnO_x-WO_3-TiO_2$ powders to act as a promoter in antifouling agents.

키워드

참고문헌

  1. Adams, L. K., D. Y. Lyon and P. J. Alvarez(2006), Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Research, Vol. 40, pp. 3527-3532. https://doi.org/10.1016/j.watres.2006.08.004
  2. Almeida, E., T. C. Diamantino and O. de Sousa(2007), Marine paints: the particular case of antifouling paints, Progress in Organic Coatings, Vol. 59, pp. 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017
  3. Amin, S. A., M. Pazouki and A. Hosseinnia(2009), Synthesis of $TiO_2$ - Ag nanocomposite with sol gel method and investigation of its antibacterial activity against E. coli, Powder Technology, Vol. 196, pp. 241-245. https://doi.org/10.1016/j.powtec.2009.07.021
  4. Brady Jr., R. F.(2000) No more tin: What now for fouling control?, Journal of Protective Coatings and Linings, Vol. 17, No. 6, pp. 42-46.
  5. Chambers, L. D., K. R. Stokes, F. C. Walsh and R. J. K. Wood(2006), Modern approaches to marine antifouling coatings, Surface and Coatings Technology, Vol. 201, No. 6, pp. 3642-3652. https://doi.org/10.1016/j.surfcoat.2006.08.129
  6. Chen, X. and S. S. Mao(2007), Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chemical Review, Vol. 107, pp. 2891-2959. https://doi.org/10.1021/cr0500535
  7. Coleman, H. M., C. P. Marquis, J. A. Scott, S. S. Chin and R. Amal(2005), Bactericidal effects of titanium dioxide-based photocatalysts, Chemical Engineering Journal, Vol. 113, pp. 55-63. https://doi.org/10.1016/j.cej.2005.07.015
  8. Heinlaan, M., A. Ivask, I. Blinova, H. C. Dubourguier and A. Kahru(2008), Toxicity of nanosized and bulk ZnO, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, Vol. 71, pp. 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047
  9. Kiil, S., C. E. Weinell, M. S. Pedersen and K. Dam-Johansen (2002), Mathematical modelling of a self-polishing antifouling paint exposed to seawater: a parameter study, Chemical Engineering Research and Design, Vol. 80, No. 1, pp. 45-52. https://doi.org/10.1205/026387602753393358
  10. Kim, B. W., T. W. Kang, H. Park, I. W. Lee, H. H. Chun and N. J. Jo(2014), Self-polishing behavior of zinc-based copolymer with different monomer composition, Macromolecular Research, Vol. 22, No. 9, pp. 978-982. https://doi.org/10.1007/s13233-014-2137-3
  11. Konstantinou, I. K. and T. A. Albanis(2004), Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review, Environmental International, Vol. 30, pp. 235-248. https://doi.org/10.1016/S0160-4120(03)00176-4
  12. Lejars, M., A. Margaillan and C. Bressy(2012), Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings, Chemical reviews, Vol. 112, No. 8, pp. 4347-4390. https://doi.org/10.1021/cr200350v
  13. Maness, P. C., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby(1999), Bactericidal activity of photocatalytic $TiO_2$ reaction: toward an understanding of its killing mechanism, Applied and Environmental Microbiology, Vol. 65, No. 9, pp. 4094-4098.
  14. Omae, I.(2003), Organotin antifouling paints and their alternatives, Applied Organometallic Chemistry, Vol. 17, No. 2, pp. 81-105. https://doi.org/10.1002/aoc.396
  15. Rajagopal, G., S. Maruthamuthu, S. Mohanan and N. Palaniswamy(2006), Biocidal effects of photocatalytic semiconductor $TiO_2$, Colloids and Surfaces B Biointerfaces, Vol. 51, pp. 107-111. https://doi.org/10.1016/j.colsurfb.2006.06.003
  16. Razmjou, A., J. Mansouri and V. Chen(2011), The effects of mechanical and chemical modification of $TiO_2$ nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, Journal of Membrane Science, Vol. 378, pp. 73-84. https://doi.org/10.1016/j.memsci.2010.10.019
  17. Shin, B. K., S. M. Kim, H. S. Lee and H. Park(2013), Powder Characteristics and Biocidal Activity of the $MnO_x$ - $WO_3$ - $TiO_2$ System Synthesized by a Sol Gel Method for Antifouling Agents, Bulletin of environmental contamination and toxicology, Vol. 91, No. 2, pp. 208-212. https://doi.org/10.1007/s00128-013-1028-1
  18. Stupak, M. E., M. T. Garcia and M. C. Perez(2003), Non-toxic alternative compounds for marine antifouling paints, International Biodeterioration & Biodegradation, Vol. 52, pp. 49-52. https://doi.org/10.1016/S0964-8305(03)00035-0
  19. Thomas, K. V., M. McHugh, M. Hilton and M. Waldock (2003), Increased persistence of antifouling paint biocides when associated with paint particles, Environmental Pollution, Vol. 123, pp. 153-161. https://doi.org/10.1016/S0269-7491(02)00343-3
  20. Turner, A.(2010), Marine pollution from antifouling paint particles, Marine Pollution Bulletin, Vol. 60, pp. 159-171. https://doi.org/10.1016/j.marpolbul.2009.12.004
  21. Voulvoulis, N., M. D. Scrimshaw and J. N. Lester(2002), Comparative environmental assessment of biocides used in antifouling paints, Chemosphere, Vol. 47, pp. 789-795. https://doi.org/10.1016/S0045-6535(01)00336-8
  22. Weir, E., A. Lawlor, A. Whelan and F. Regan(2008), The use of nanoparticles in anti-microbial materials and their characterization, Analyst, Vol. 133, No. 7, pp. 835-845. https://doi.org/10.1039/b715532h