• Title/Summary/Keyword: Self Polishing Copolymer (SPC) resin

Search Result 2, Processing Time 0.021 seconds

Antifouling Paint Resin Based on Polyurethane Matrix with Quaternary Ammonium Salt (Quaternary Ammonium Salt를 도입한 방오도료용 폴리우레탄 수지)

  • Kim, Dae-Hee;Jung, Min-Yeong;Park, Hyun;Lee, In-Won;Chun, Ho-Hwan;Jo, Nam-Ju
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.122-129
    • /
    • 2015
  • Recently, the development of a new class of anti-fouling paint resin which has excellent anti-fouling performance and no persistence in the marine ecology is necessary. In this study, we first polymerized polyurethanes (PUs) as the other type of matrix which have carboxylic acid groups by using poly(ethylene glycol) (PEG), 4,4'-diphenylmethane diisocyanate (MDI), and 2,2'-bis(hydroxyl methyl)-propionic acid (DMPA). And next, we synthesized final resins having quaternary ammonium salts on pendant acid groups of PUs. After synthesis, the physical self-polishing property of resin by the measurement of reduced thickness in sea water was tested. The mechanical property of antifouling paint resin was good when the molecular weight of PEG was 600 or less. It was confirmed that the adhesion of PU resin was deteriorated when the content of quaternary ammonium salt was incorporated over specific value.

Surface Characteristics and Antifouling Performance of Inorganic MnOx-WO3-TiO2 Nanopowder for Self-polishing Copolymer Paint Applications (무기계 MnOx-WO3-TiO2 나노분말의 표면특성 및 자기마모형 수지 적용성 평가)

  • Shin, Byeongkil;Park, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.253-258
    • /
    • 2016
  • The $MnO_x-WO_3-TiO_2$ nanoscale powders were synthesized by sol-gel method in order to prevent the biological fouling on the ships and offshore structures. Powder characteristics and antifouling performance were investigated with respect to the crystalline, microstructure and surface property for application in self-polishing copolymer resins. The high antifouling activity of $TiO_2$-system biocide was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics. Based on their physio-chemical characterizations, the specific surface areas of powders were about $90m^2/g$ and the grain size was in the region 100 ~ 150 nm. Powder characteristics and surface properties were improved by the addition of $WO_3$. Antifouling performance were analyzed according to their surface properties and static immersion tests to determine the effects of the $TiO_2$-system compounds. The surface of 2 wt. % added sample was clean for 5 month. This may be attributed to the ability of $MnO_x-WO_3-TiO_2$ powders to act as a promoter in antifouling agents.