• Title/Summary/Keyword: Tungsten oxides

Search Result 39, Processing Time 0.022 seconds

The Effects of the Electron Reflecting Layer Screen-printed with the Lead Tungsten Oxides on the Shadow Mask in CRT

  • Kim, Sang-Mun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.113-117
    • /
    • 2003
  • To reduce the doming of the shadow mask due to thermal expansion and to prevent the color discrepancy, the electron reflecting layer with lead tungsten oxides on the electron gun side of shadow mask was formed by screen printing method and doming property was evaluated in CRT. First, the lead tungsten oxides were prepared by calcining the mixture of lead oxide and tungsten oxide above 600$^{\circ}C$. Second, the paste which has the anti-doming composition including the lead tungsten oxides was coated by screen-printing method. As a result, the doming of the shadow mask was reduced about from 30 to 45%.

Preparation of Electrolytic Tungsten Oxide Thin Films as the Anode in Rechargeable Lithium Battery (리튬 이차전지용 텅스텐 산화물 전해 도금 박막 제조)

  • Lee, Jun-Woo;Choi, Woo-Sung;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.680-686
    • /
    • 2013
  • Tungsten oxide films were prepared by an electrochemical deposition method for use as the anode in rechargeable lithium batteries. Continuous potentiostatic deposition of the film led to numerous cracks of the deposits while pulsed deposition significantly suppressed crack generation and film delamination. In particular, a crack-free dense tungsten oxide film with a thickness of ca. 210 nm was successfully created by pulsed deposition. The thickness of tungsten oxide was linearly proportional to deposition time. Compositional and structural analyses revealed that the as-prepared deposit was amorphous tungsten oxide and the heat treatment transformed it into crystalline triclinic tungsten oxide. Both the as-prepared and heat-treated samples reacted reversibly with lithium as the anode for rechargeable lithium batteries. Typical peaks for the conversion processes of tungsten oxides were observed in cyclic voltammograms, and the reversibility of the heat-treated sample exceeded that of the as-prepared one. Consistently, the cycling stability of the heat-treated sample proved to be much better than that of the as-prepared one in a galvanostatic charge/discharge experiment. These results demonstrate the feasibility of using electrolytic tungsten oxide films as the anode in rechargeable lithium batteries. However, further works are still needed to make a dense film with higher thickness and improved cycling stability for its practical use.

Current Status of Smelting and Recycling Technologies of Tungsten (텅스텐의 제련과 리사이클링 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2021
  • Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300-1700℃ in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.

AC impedance study on the interface between organic electrolyte and amorphous $WO_3$ thin film relating to the electrochemical intercalation of lithium (비정질 $WO_3$ 박막과 전해질 계면에서의 리튬 층간 반응의 교류 임피던스 해석)

  • Kim Byoung-Chul;Ju Jeh-Beck;Sohn Tae-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.33-39
    • /
    • 1998
  • To AC impedance study was performed in this study on the interfacial reaction between organic electrolyte and amorphous tungsten oxides thin film, cathodically coloring oxide, prepared by e-beam evaporation method in the 1 M $LiClO_4/PC$ organic solution. The electrochemical reactions at the interface were analyzed by the transient method and the complex impedance spectroscopy. The impedance spectrums showed that the electro-chemical intercalation of lithium cations was consisted of the following three steps; the first step, the charge transfer reaction of lithium cation at the interface between amorphous tungsten oxides thin film and the organic electrolyte, the second step, the adsorption of lithium atom on the surface of amorphous tungsten oxides thin film, and then the third step, the absorption and the diffusion of lithium atom into amorphous tungsten oxides thin layer. The bleaching and the coloring characteristics of amorphous tungsten oxides thin film were explained in terms of thermodynamic and kinetic variables, the simulated $R_{ct},\;C_{dl},\;D$ and $\sigma_{Li}$ by CNLS fitting method. Especially it was found that the limiting values of electrochromic reaction were the molar ratio of lithium, y=0.167 and the electrode potential, E=2.245 V (vs. Li).

Water Leaching of Tungsten and Vanadium through Mechanochemical Reaction of Their Oxides and Alkali-Compounds (알칼리화합물과 텅스텐/바나듐산화물의 기계화학반응을 이용한 수 침출 연구)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Water leaching of tungsten(W) and vanadium(V) was researched from their oxides through mechanochemical (MC) reaction with alkali compounds. Intensive grinding for the mixture of tungsten/vanadium oxide and alkali compounds (NaOH, $Na2CO_3$) was carried out with change of their mixing ratios and grinding duration. Water soluble compounds, $Na_2WO_4$ and $NaVO_3$, were synthesized through MC reaction and their solubilities increased in proportion to the mixing ratio of sodium compound and grinding times. Whereas vanadium leachability was less affected by the mixting ratio and grinding times. The leachabilities of 99.0% were accomplished by a short period of MC treatment, W (30 min.) and V (5 min.). This process enable us to extract W and V from their oxides via a water leaching, and can be applied to the selective recovery of W and V from $DeNO_x$ spent catalysts.

A facile one-pot solution-phase route to synthesizing anovel composite hierarchical hollow structure: W18O49/WO2 Hollow Nanourchins

  • Jeon, Seong-Ho;Yong, Gi-Jung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.33.1-33.1
    • /
    • 2009
  • To date, nanostructured tungsten oxides with a variety of stoichiometries, such as WO3, WO2.9, W18O49, and WO2, have been prepared, because they are promising candidates for applications such as gas sensors, photocatalysts, electrochromic devices, and field emission devices. Among them, W18O49 and WO2 have been widely studied due to their outstanding chemical sensing, catalytic, and electron emissive properties. Here we report, for the first time, a one-pot solution-phase route to synthesizing a novel composite hierarchical hollow structure without adding catalysts, surfactants, or templates. The products, consisting of a WO2 hollow core sphere surrounded by a W18O49 nanorod shell (yielding a sea urchin-like structure), were generated as discrete structures via Ostwald ripening. To our knowledge, this type of composite hierarchical core/shell structure has not been reported previously. The morphological evolution and the detailed growth mechanism were carefully studied. We also demonstrate that the size of the hollow urchins is readily tunable by controlling the reactant concentrations.Interestingly, although bulk tungsten oxides are weakly paramagnetic or diamagnetic, the as-prepared products show unusual ferromagnetic behavior atroom temperature. The urchin structures also show a very high Brunauer-Emmet-Teller (BET) surface area, suggesting that they may potentially be applied to chemical sensor or effective catalyst technologies.

  • PDF

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF

Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application (육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

A study of decomposition of sulfur oxides using Calcium hydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구)

  • Kim, Da Young;Woo, In Sung;Lee, Sun Hee;Kim, Do Hyeon;Kim, Byeong Cheol
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.547-560
    • /
    • 2013
  • In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.

  • PDF