DOI QR코드

DOI QR Code

Improving 3'-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy

  • Wang, Tzi-Yuan (Biodiversity Research Center, Academia Sinica) ;
  • Tsai, Yi-Hsuan (Department of Biological Sciences and Technology, National University of Tainan) ;
  • Yu, I-Zen (Department of Biological Sciences and Technology, National University of Tainan) ;
  • Chang, Te-Sheng (Department of Biological Sciences and Technology, National University of Tainan)
  • Received : 2015.09.04
  • Accepted : 2015.12.14
  • Published : 2016.03.28

Abstract

3'-Hydroxygenistein can be obtained from the biotransformation of genistein by the engineered Pichia pastoris X-33 strain, which harbors a fusion gene composed of CYP57B3 from Aspergillus oryzae and a cytochrome P450 oxidoreductase gene (sCPR) from Saccharomyces cerevisiae. P. pastoris X-33 mutants with higher 3'-hydroxygenistein production were selected using a periodic hydrogen peroxide-shocking strategy. One mutant (P2-D14-5) produced 23.0 mg/l of 3'-hydroxygenistein, representing 1.87-fold more than that produced by the recombinant X-33. When using a 5 L fermenter, the P2-D14-5 mutant produced 20.3 mg/l of 3'-hydroxygenistein, indicating a high potential for industrial-scale 3'-hydroxygenistein production.

Keywords

References

  1. Chang TS. 2014. Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int. J. Mol. Sci. 15: 5699-5716. https://doi.org/10.3390/ijms15045699
  2. Charaux C, Rabate J. 1939. Constitution chimique de l'orobol. Bull. Soc. Chim. Biol. (Paris) 21: 1330-1333.
  3. Chen QC, Zhang WY, Jin W, Lee IS, Min BS, Jung HJ, et al. 2010. Flavonoids and isoflavonoids from Sophorae Flos improve glucose uptake in vitro. Planta Med. 76: 79-81. https://doi.org/10.1055/s-0029-1185944
  4. Ding HY, Chiang CM, Chen YC, Chang TS. 2015. Identifying 3'-hydroxygenistein as potent melanogenesis inhibitor from biotransformation of genistein by recombinant Pichia pastoris. Process Biochem. 50: 1614-1617. https://doi.org/10.1016/j.procbio.2015.06.007
  5. Ding HY, Lin PW, Wang HW, Chang TS. 2014. Methanol partition fraction of ethanol extract of Dioscorea nipponica Makino inhibits melanogenesis. Trop. J. Pharm. Res. 13: 719-726. https://doi.org/10.4314/tjpr.v13i5.10
  6. Kiriakidis S, Hogemeier O, Starcke S, Dombrowski F, Hahne JC, Pepper M, et al. 2005. Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay. Br. J. Nutr. 93: 317-323. https://doi.org/10.1079/BJN20041330
  7. Lee JY, Lee HJ, Seo J, Kim ES, Lee HS, Kim P. 2014. Artifical oxidative stress-tolerant Corynebacterium glutamicum. AMB Express 4: 15. https://doi.org/10.1186/s13568-014-0015-1
  8. Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. Adaptive evolutin of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717. https://doi.org/10.1007/s10529-012-1135-9
  9. Ma CH, Chen B, Qi HY, Li BG, Zhang GL. 2004. Two pyranocoumarins from the seeds of Calophyllum polyanthum. J. Nat. Prod. 67: 1598-1600. https://doi.org/10.1021/np0499158
  10. Matsuda H, Morikawa T, Xu F, Ninomiya K, Yoshikawa M. 2004. New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa. Planta Med. 70: 1201-1209. https://doi.org/10.1055/s-2004-835852
  11. Nguyen DT, Hernandez-Montes E, Vauzour D, Schonthal AH, Rice-Evans C, Cadenas E, Spencer JP. 2006. The intracellular genistein metabolite 5,7,3',4'-tetrahydroxyisoflavone mediates G2-M cell cycle arrest in cancer cells via modulation of the p38 signaling pathway. Free Radic. Biol. Med. 41: 1225-1239. https://doi.org/10.1016/j.freeradbiomed.2006.06.026
  12. Reyes LH, Gomez JM, Kao KC. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21: 26-33. https://doi.org/10.1016/j.ymben.2013.11.002
  13. Tewtrakul S, Subhadhirasakul S, Cheenpracha S, Karalai C. 2007. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phytother. Res. 21: 1092-1095. https://doi.org/10.1002/ptr.2252
  14. Tewtrakul S, Subhadhirasakul S, Tansakul P, Cheenpracha S, Karalai C. 2011. Antiinflammatory constituents from Eclipta prostrata using RAW264.7 macrophage cells. Phytother. Res. 25: 1313-1316.
  15. Umezawa H, Tobe H, Shibamoto N, Nakamura F, Nakamura K. 1975. Isolation of isoflavones inhibiting DOPA decarboxylase from fungi and streptomyces. J. Antibiot. (Tokyo) 28: 947-952. https://doi.org/10.7164/antibiotics.28.947
  16. Vauzour D, Vafeiadou K, Rice-Evans C, Cadenas E, Spencer JP. 2007. Inhibition of cellular proliferation by the genistein metabolite 5,7,3',4'-tetrahydroxyisoflavone is mediated by DNA damage and activation of the ATR signalling pathway. Arch. Biochem. Biophys. 468: 159-166. https://doi.org/10.1016/j.abb.2007.09.021

Cited by

  1. Improving Free Radical Scavenging Activity of Soy Isoflavone Glycosides Daidzin and Genistin by 3′-Hydroxylation Using Recombinant Escherichia coli vol.21, pp.12, 2016, https://doi.org/10.3390/molecules21121723
  2. Altering the Regioselectivity of Cytochrome P450 BM3 Variant M13 toward Genistein through Protein Engineering and Variation of Reaction Conditions vol.5, pp.49, 2020, https://doi.org/10.1021/acsomega.0c05088
  3. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products vol.6, pp.2, 2021, https://doi.org/10.1016/j.synbio.2021.04.005
  4. Metabolic Engineering of Microbial Cell Factories for Biosynthesis of Flavonoids: A Review vol.26, pp.15, 2016, https://doi.org/10.3390/molecules26154522