References
- Darise M, Mizutani K, Kasai R, Tanaka O, Kitahata S, Okada S, et al. 1984. Enzymic transglucosylation of rubusoside and the structure-sweetness relationship of steviol-bisglycosides. Agric. Biol. Chem. 48: 2483-2488.
- George Thompson AM, Lancu CV, Naguyen TT, Kim D, Choe JY. 2015. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity. Sci. Rep. 5: 12804. https://doi.org/10.1038/srep12804
- Ishikawa H, Kitahata S, Ohtani K, Ikuhara C, Tanaka O. 1990. Production of stevioside and rubusoside derivatives by transfructosylation of β-fructofuranosidase. Agric. Biol. Chem. 54: 3137-3143.
- Kim YM, Yeon MJ, Choi NS, Chang YH, Jung MY, Song JJ, Kim JS. 2010. Purification and characterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol. Res. 165: 384-391. https://doi.org/10.1016/j.micres.2009.08.005
- Kitahata S, Ishikawa H, Miyata T, Tanaka O. 1989. Production of rubusoside derivatives by transgalactosylation of various α-galactosidases. Agric. Biol. Chem. 53: 2929-2934.
- Ko JA, Jeong HJ, Ryu YB, Park SJ, Wee YJ, Kim D, et al. 2012. Large increase in Leuconostoc citreum KM20 dextransucrase activity achieved by changing the strain/inducer combination in an E. coli expression system. J. Microbiol. Biotechnol. 22: 510-515. https://doi.org/10.4014/jmb.1111.11032
- Lee HY, Jung KH. 2014. Enzymatic synthesis of 2-phenoxyethanol galactoside by whole cells of β-galactosidase-containing Escherichia coli. J. Microbiol. Biotechnol. 24: 1254-1259. https://doi.org/10.4014/jmb.1404.04004
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Moon YH, Kim G, Lee JH, Jin XJ, Kim DW, Kim D. 2006. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. J. Mol. Catal. B Enzym. 40: 1-7. https://doi.org/10.1016/j.molcatb.2006.01.030
- Nguyen TT, Jung SJ, Kim HK, Kim YM, Moon YH, Kim H, Kim D. 2014. Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophiles and solubility enhancement of liquiritin and teniposide. Enzyme Microb. Technol. 64-65: 38-43. https://doi.org/10.1016/j.enzmictec.2014.07.001
- Ohtani K, Aikawa Y, Ishikawa H, Kasai R, Kitahata S, Mizutani K, et al. 1991. Further study on the 1,4-alpha-transglucosylation of rubusoside, a sweet steviol-biglucoside from Rubus suavissimus. Agric. Biol. Chem. 55: 449-453.
- Seo ES, Kim D, Robyt JF, Day DF, Kim DW, Park HJ, Park HJ. 2004. Modified oligosaccharides as potential dental plaque control materials. Biotechnol. Prog. 20: 1550-1554. https://doi.org/10.1021/bp049883e
- Su D, Robyt JF. 1993. Control of the synthesis of dextan and acceptor-products by Leuconosotc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476. https://doi.org/10.1016/0008-6215(93)84139-W
- Tanaka O. 1997. Improvement of taste of natural sweeteners. Pure Appl. Chem. 69: 675-683. https://doi.org/10.1351/pac199769040675
- Tanaka T, Kohda H, Tanaka O, Chen FH, Chou WH, Leu JL. 1981. Rubusoside (β-D-glucosyl ester of 13-O-β-D-glucosyl-steviol), a sweet principle of Rubus chingii Hu (Rosaceae). Agric. Biol. Chem. 45: 2165-2166.
- Yoon SH, Robyt JF. 2002. Synthesis of acarbose analogues by transglycosylation reactions of Leuconostoc mesenterioides B-512FMC and B-742CB dextransucrase. Carbohydr. Res. 24: 2427-2435. https://doi.org/10.1016/S0008-6215(02)00350-6
- Zhang F, Koh GY, Hollingsworth J, Russo PS, Stout RW, Liu Z. 2012. Reformulation of etoposide with solubility-enhancing rubusoside. Int. J. Pharm. 434: 453-459. https://doi.org/10.1016/j.ijpharm.2012.06.013
Cited by
- Isolation and characterization of an exopolysaccharide‐producing Leuconostoc citreum strain from artisanal cheese vol.67, pp.6, 2018, https://doi.org/10.1111/lam.13073
- Enzymatic Monoglucosylation of Rubusoside and the Structure-Sweetness/Taste Relationship of Monoglucosyl Derivatives vol.68, pp.32, 2020, https://doi.org/10.1021/acs.jafc.0c03236
- Efficient Biocatalytic Preparation of Rebaudioside KA: Highly Selective Glycosylation Coupled with UDPG Regeneration vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-63379-9
- The role of metabolites of steviol glycosides and their glucosylated derivatives against diabetes-related metabolic disorders vol.12, pp.18, 2016, https://doi.org/10.1039/d1fo01370j