DOI QR코드

DOI QR Code

불화가스 분리를 위한 중공사막 모듈의 다단 기체분리공정 연구

Study on the Multi-stage Hollow Fiber Membrane Modules for SF6 Gas Separation

  • 투고 : 2016.04.03
  • 심사 : 2016.04.28
  • 발행 : 2016.04.30

초록

다단기체분리 공정을 수행하기 위해 폴리이미드 중공사막 모듈을 제조하여 혼합기체 $N_2$ : $SF_6$ = 50 : 50에 대한 기체분리특성을 확인하였다. 제조된 중공사막 모듈은 0.5 MPa에서 stage cut을 조절하여 투과 유량, 농도 등의 성능을 측정하였다. 중공사막 모듈은 1단 분리 테스트에서 $N_2/SF_6$ 선택도가 높을수록 동일한 stage cut에서 높은 $SF_6$ 회수율을 얻을 수 있었다. 1단 시험결과에 따라 $SF_6$ 회수율과 농축농도를 동시에 높이기 위해 2단 기체 분리 테스트 진행함으로써 $SF_6$ 회수율 95% 이상, $SF_6$ 회수농도 98% 이상을 농축할 수 있었다.

Polyimide hollow fiber membrane modules were prepared in order to investigate the process of multi stage gas separation. The modules performance was carried out using 50/50 of $N_2/SF_6$ mixed gas. The membrane modules has been tested for measuring gas flow rate and concentration under various stage cut at 0.5 MPa. The membrane modules showed a high recovery ratio at the same stage cut as $N_2/SF_6$ selectivity increased. Two stage process was fulfilled for improving $SF_6$ recovery ratio and $SF_6$ concentration. Eventually, two stage process showed higher performance of $SF_6$ recovery ratio and concentration ($SF_6$ recovery ratio = 95%, $SF_6$ conc. = 98%).

키워드

참고문헌

  1. E. Preisegger, R. Durschner, W. Klotz, C. A. Konig, H. Krahling, C. Neumann, and B. Zahn, "Non-$CO_2$ greenhouse gases: scientific understanding, control and implementation; Life cycle assessment electricity supply using $SF_6$ technology", pp. 391, Kluwer Academic Publishers, Dordrecht (1999).
  2. W. T. Tsai, "The decomposition products of sulfur hexafluoride ($SF_6$): Reviews of environmental and health risk analysis", J. Fluorine Chem., 128, 1345 (2007). https://doi.org/10.1016/j.jfluchem.2007.06.008
  3. O. Yamamoto, T. Takuma, A. Kawamura, K. Hashimoto, N. Hatano, and M. Kinouchi, "$SF_6$ gas recovery from $SF_6$/$N_2$ mixtures using polymer membrane", in Gaseous Dielectrics IX, pp. 555-560, Kluwer Academic/Plenum Publishers, New York, NY (2001).
  4. S. J. Lee, J. S. Lee, M. W. Lee, J. W. Choi, and S. H. Kim, "Separation of sulfur hexafluoride ($SF_6$) from ternary gas mixtures using commercial polysulfone (PSf) hollow fiber membranes", J. Membr. Sci., 452, 315 (2014).
  5. M. Maiss, L. P. Steele, R. J. Francey, P. J. Fraser, R. L. Langenfelds, N. B. A. Trivett, and I. Levin, "Sulfur hexafluoride- A powerful new atmospheric tracer", Atmos. Environ., 30, 1621 (1996). https://doi.org/10.1016/1352-2310(95)00425-4
  6. M. K. W. Ko, N. D. Sze, W.-C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, and C. P. Rinsland, "Atmospheric sulfur hexafluoride: sources, sinks and greenhouse warming", J. Geophys. Res., 98, 499 (1993).
  7. H. Lee, M. Lee, H. Lee, and S. Lee, "Separation and recovery of $SF_6$ gas from $N_2$/$SF_6$ gas mixtures by using a polymer hollow fiber membranes", J. Korean Soc. Environ. Eng., 33, 47 (2011). https://doi.org/10.4491/KSEE.2011.33.1.047
  8. H. J. Lee, M. W. Lee, H. K. Lee, H. S. Choi, and S. H. Lee, "Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes", Membr. J., 21, 23 (2011).
  9. S. J. Lee, J. S. Lee, M. W. Lee, J. W. Choi, and S. H. Kim, "Separation of sulfur hexafluoride ($SF_6$) from ternary gas mixtures using commercial polysulfone (PSf) hollow fiber membranes", J. Membr. Sci., 452, 313 (2014).
  10. S. E. Nam, A. Park, and Y. I. Park, "Separation and Recovery of F-gases", Membr. J., 23, 190 (2013).
  11. O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_6$ from $N_2$/$SF_6$ gas mixtures by using a polymer membrane", IEEE Electr. Insul. Mag., 18, 32 (2002). https://doi.org/10.1109/MEI.2002.1014965
  12. W. T. Tsai, H. P. Chen, and W. Y. Hsien, "A review of uses, environmental hazards and recovery/ recycle technologies of perfluorocarbons (PFCs) be mission from the semiconductor manufacturing process", J. Loss Prevent. Proc. Ind., 15, 65 (2002). https://doi.org/10.1016/S0950-4230(01)00067-5
  13. M. Toyoda, H. Murase, T. Inohara, H. Nadsuka, A. Kobayashi, K. Takano, and K. Ohkuma, "Application of Pressure Swing Adsorption to $SF_6$ Separation and Liquefaction from $SF_6$/$N_2$ Mixtures", IEEEE Electr. Insul. Mag., 3, 2156 (2000).
  14. T. Beppu, "New Alternative Gas Process Feasibility Study for PFC Emission Reduction from Semiconductor CVD Chamber Cleaning", Greenhouse Gas Control Technologies - 6th International Conference, Volume II, 1269 (2003).
  15. T. Pulles and A. van Amstel, "An overview of non-$CO_2$ greenhouse gases", J. Integr. Environ. Sci., 7, 3 (2010). https://doi.org/10.1080/1943815X.2010.505241
  16. 2010 ISMI Semiconductor Greenhouse Gas (GHG) Reporting Rule Survey Results, International SEMATECH manufacturing Initiative (2010).
  17. Airrane Co. Ltd, "Method for preparation of carbon molecular sieve hollow fiber membrane precursor, and carbon molecular sieve hollow fiber membrane precursor and carbon molecular sieve hollow fiber membrane manufactured thereby", KOR Patent, 10-1562307 (2015).
  18. K. H. Seong, J. S. Song, H. C. Koh, S. Y. Ha, M. H. Han, and C. H. Cho, "Effect of carbonization conditions on gas permeation of methyl imide based carbon molecular sieve hollow fiber membranes", Membr. J., 23, 335 (2013).
  19. C. S. Lee, E. H. Cho, S. Y. Ha, J. T. Chung, and J. W. Rhim, "Multi-stage process study of PEI-PDMS hollow fiber composite membrane modules for $H_2$/$CO_2$ mixed gas separation", Membr. J., 23, 4 (2013).