DOI QR코드

DOI QR Code

Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

  • Gavilan-Moreno, Carlos J. (Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department) ;
  • Espinosa-Paredes, Gilberto (Area de ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa)
  • 투고 : 2015.07.09
  • 심사 : 2015.12.14
  • 발행 : 2016.04.25

초록

The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

키워드

참고문헌

  1. United States Nuclear Regulatory Commission (U.S. NRC), Power Oscillating in Boiling Water Reactor (BWR5) NRC, Washington (DC), Bulletin No. 88, 1988, p. 7.
  2. J.L. Munoz-Cobo, G. Verdu, Application of Hopf bifurcation theory and variational methods to the study of limit cycles in boiling water reactors, Ann. Nucl. Energy 18 (1991) 269-302. https://doi.org/10.1016/0306-4549(91)90012-M
  3. C.Y. Yang, N.Z. Cho, Expansion methods for finding nonlinear stability domains of nuclear reactor models, Ann. Nucl. Energy 19 (1992) 347-368. https://doi.org/10.1016/0306-4549(92)90077-O
  4. J.L. Munoz-Cobo, G. Verdu, C. Pereira, Dynamic reconstruction and Lyapunov exponents from time series data in boiling water reactors, application to BWR stability analysis, Ann. Nucl. Energy 19 (1992) 223-235. https://doi.org/10.1016/0306-4549(92)90061-F
  5. J.P. Eckmann, S. Oliffson, D. Ruelle, S. Ciliberto, Lyapunov exponents from time series, Phys. Rev. A 34 (1986) 4971. https://doi.org/10.1103/PhysRevA.34.4971
  6. J. March-Leuba, Density-wave Instabilities in Boiling Water Reactors (No. NUREG/CR-6003; ORNL/TM-12130), Nuclear Regulatory Commission, Washington, DC, United States, 1992. Division of Systems Technology; Oak Ridge National Laboratory, Oak Ridge (TN).
  7. C. Pereira, G. Verdu, J.L. Munoz-Cobo, R. Sanchis, BWR stability from dynamic reconstruction and autoregressive model analysis: application to Cofrentes Nuclear Power Plant, Prog. Nucl. Energy 27 (1992) 51-68. https://doi.org/10.1016/0149-1970(92)90017-W
  8. G. Verdu, D. Ginestar, M.D. Bovea, P. Jimenez, J. Pena, J.L. Munoz-Cobo, Complex Lyapunov exponents from short and noisy sets of data, Application to stability analysis of BWRs, Ann. Nucl. Energy 24 (1997) 973-994. https://doi.org/10.1016/S0306-4549(97)00022-4
  9. H. Konno, S. Kanemoto, Y. Takeuchi, Theory of stochastic bifurcation in BWRs and applications, Prog. Nucl. Energy 43 (2003) 201-207. https://doi.org/10.1016/S0149-1970(03)00028-3
  10. T. Suzudo, Application of a nonlinear dynamical descriptor to BWR stability analyses, Prog. Nucl. Energy 43 (2003) 217-223. https://doi.org/10.1016/S0149-1970(03)00029-5
  11. G. Verdu, D. Ginestar, J.L. Munoz-Cobo, J. Navarro-Esbri, M.J. Palomo, P. Lansaker, J.M. Conde, M. Recio, E. Sartori, Forsmark 1&2 Stability Benchmark. Time Series Analysis Methods for Oscillations during BWR Operation, Final Report, NEA/NSC/DOC, OECD Publications, 2 rue Andre-Pascal, 75775 PARIS CEDEX 16, 2001, p. 2. Printed in France.
  12. R.Castillo,G.Alonso,J.C.Palacios, Determinationoflimitcycles using both the slope of correlation integral and dominant Lyapunov methods, Nucl. Technol. 145 (2004) 139-149. https://doi.org/10.13182/NT04-A3465
  13. R. Khoda-Bakhsh, S. Behnia, O. Jahanbakhsh, Stability analysis in nuclear reactor using Lyapunov exponent, Ann. Nucl. Energy 35 (2008) 1370-1372. https://doi.org/10.1016/j.anucene.2007.12.013
  14. F.Y. Li, Z. Chen, Y. Liu, Research on stability of a reactor with power reactivity feedback, Prog. Nucl. Energy 67 (2013) 15-17. https://doi.org/10.1016/j.pnucene.2013.03.025
  15. C.J. Gavilan Moreno, Use of the HURST exponent as a monitor and predictor of BWR reactor instabilities, Ann. Nucl. Energy 37 (2010) 434-442. https://doi.org/10.1016/j.anucene.2009.12.007
  16. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985) 285-317. https://doi.org/10.1016/0167-2789(85)90011-9
  17. M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65 (1993) 117-134. https://doi.org/10.1016/0167-2789(93)90009-P
  18. S. Sato, M. Sano, Y. Sawada, Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems, Prog. Theor. Phys. 77 (1987) 1-5. https://doi.org/10.1143/PTP.77.1
  19. H.D. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, The analysis of observed chaotic data in physical systems, Rev. Mod. Phys. 65 (1993) 1331. https://doi.org/10.1103/RevModPhys.65.1331
  20. H.D. Abarbanel, M.B. Kennel, Local false nearest neighbors and dynamical dimensions from observed chaotic data, Phys. Rev. E 47 (1993) 3057. https://doi.org/10.1103/PhysRevE.47.3057
  21. United States Nuclear Regulatory Commission (U.S. NRC), Density-wave Instabilities in Boiling Water Reactors, Oak Ridge National Laboratory, Oak Ridge (TN), 1992. NUREG/CR-6003 ORNL/TM-12130.
  22. R. Castillo, G. Alonso, J.R. Ramirez, Validation of SIMULATE-3K for stability analysis of Laguna Verde nuclear plant, Nucl. Eng. Des. 265 (2013) 19-24. https://doi.org/10.1016/j.nucengdes.2013.08.051
  23. R. Castillo, J.R. Ramirez, G. Alonso, J. Ortiz-Villafuerte, Prony's method application for BWR instabilities characterization, Nucl. Eng. Des. 284 (2015) 67-73. https://doi.org/10.1016/j.nucengdes.2014.11.034
  24. C.J. Gavilan Moreno, A. Prieto-Guerrero, G. Espinosa-Paredes, Nuclear power plant instabilities analysis, Ann. Nucl. Energ 85 (2015) 279-289. https://doi.org/10.1016/j.anucene.2015.05.029
  25. L. Noakes, The Takens embedding theorem, Int. J. Bifurcation Chaos 1 (1991) 867-872. https://doi.org/10.1142/S0218127491000634
  26. F. Takens, Detecting Strange Attractors in Turbulence, Springer, Berlin, 1981, pp. 366-381.
  27. H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986) 1134-1140. https://doi.org/10.1103/PhysRevA.33.1134
  28. M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, Vol. 52, Nonlinear Science Series A, World Scientific, Singapore, 2005.
  29. L.D. Iasemidis, J.C. Sackellares, The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex, in: D.W. Duke, W.S. Pritchard (Eds.), Measuring Chaos in the Human Brain, World Scientific, Singapore, 1991, pp. 49-82.
  30. A. Komori, T. Baba, T. Morisaki, M. Kono, H. Iguchi, K. Nishimura, K. Matsuok, Correlation dimension and largest Lyapunov exponent for broadband edge turbulence in the compact helical system, Phys. Rev. Lett. 73 (1994) 660. https://doi.org/10.1103/PhysRevLett.73.660
  31. A.D. Krystal, C. Zaidman, H.S. Greenside, R.D. Weiner, C.E. Coffey, The largest Lyapunov exponent of the EEG during ECT seizures as a measure of ECT seizure adequacy, Electroencephalogr. Clin. Neurophysiol. 103 (1997) 599-606. https://doi.org/10.1016/S0013-4694(97)00062-X
  32. A. Torcini, R. Livi, A. Politi, S. Ruffo, Comment on universal scaling law for the largest Lyapunov exponent in coupled map lattices, Phys. Rev. Lett. 78 (1997) 1391. https://doi.org/10.1103/PhysRevLett.78.1391
  33. R. Van Zon, H. Van Beijeren, C. Dellago, Largest Lyapunov exponent for many particle systems at low densities, Phys. Rev. Lett. 80 (1998) 2035. https://doi.org/10.1103/PhysRevLett.80.2035
  34. A. Giovanni, M. Ouaknine, J.M. Triglia, Determination of largest Lyapunov exponents of vocal signal: application to unilateral laryngeal paralysis, J. Voice 13 (1999) 341-354. https://doi.org/10.1016/S0892-1997(99)80040-X
  35. A. Stefanski, Estimation of the largest Lyapunov exponent in systems with impacts, Chaos Solitons Fract. 11 (2000) 2443-2451. https://doi.org/10.1016/S0960-0779(00)00029-1
  36. K.E. Chlouverakis, M.J. Adams, Stability maps of injectionlocked laser diodes using the largest Lyapunov exponent, Opt. Commun. 216 (2003) 405-412. https://doi.org/10.1016/S0030-4018(02)02357-X

피인용 문헌

  1. A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions vol.26, pp.13, 2016, https://doi.org/10.1142/s0218127416502266
  2. Non-Linear Stability Analysis of Real Signals from Nuclear Power Plants (Boiling Water Reactors) Based on Noise Assisted Empirical Mode Decomposition Variants and the Shannon Entropy vol.19, pp.7, 2016, https://doi.org/10.3390/e19070359
  3. On the Use of Interval Extensions to Estimate the Largest Lyapunov Exponent from Chaotic Data vol.2018, pp.None, 2016, https://doi.org/10.1155/2018/6909151
  4. Time Series Analysis for BWR Stability Studies vol.206, pp.4, 2016, https://doi.org/10.1080/00295450.2019.1662668