DOI QR코드

DOI QR Code

Detection of Antineutrinos for Reactor Monitoring

  • Kim, Yeongduk (Center for Underground Physics, Institute of Basic Science)
  • Received : 2016.02.10
  • Accepted : 2016.02.11
  • Published : 2016.04.25

Abstract

Reactor neutrinos have been detected in the past 50 years by various detectors for different purposes. Beginning in the 1980s, neutrino physicists have tried to use neutrinos to monitor reactors and develop an optimized detector for nuclear safeguards. Recently, motivated by neutrino oscillation physics, the technology and scale of reactor neutrino detection have progressed considerably. In this review, I will give an overview of the detection technology for reactor neutrinos, and describe the issues related to further improvements in optimized detectors for reactor monitoring.

Keywords

References

  1. C.L. Cowan, F. Reines, F.B. Harrison, H.W. Kruse, A.D. McGuire, Detection of the free neutrinos: a confirmation, Science 124 (1956) 103-104. https://doi.org/10.1126/science.124.3212.103
  2. R.W. King, J.F. Perkins, Inverse beta decay and the twocomponent neutrino, Phys. Rev. 112 (1958) 963-966. https://doi.org/10.1103/PhysRev.112.963
  3. B.R. Davis, et al., Reactor antineutrino spectra and their application to antineutrino-induced reactions, Phys. Rev. C 19 (1979) 2259-2266. https://doi.org/10.1103/PhysRevC.19.2259
  4. P. Vogel, J. Engel, Neutrino electromagnetic form factors, Phys. Rev. D 39 (1989) 3378-3383. https://doi.org/10.1103/PhysRevD.39.3378
  5. P. Huber, T. Schwetz, Precision spectroscopy with reactor antineutrinos, Phys. Rev. D 70 (2004) 053011. https://doi.org/10.1103/PhysRevD.70.053011
  6. Th.A. Mueller, et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615. https://doi.org/10.1103/PhysRevC.83.054615
  7. P. Huber, Determination of antineutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617. Erratum, Phys. Rev. C85 (2012) 029901. https://doi.org/10.1103/PhysRevC.84.024617
  8. P. Vogel, J.F. Beacom, Angular distribution of neutron inverse beta decay, ${\bar{\nu}}+P{\rightarrow}e^+$ + n, Phys. Rev. D 60 (1999) 053003. https://doi.org/10.1103/PhysRevD.60.053003
  9. www.nndc.bnl.gov.
  10. Y. Fukuda, et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562-1567. https://doi.org/10.1103/PhysRevLett.81.1562
  11. M. Abbes, et al., The Bugey 3 neutrino detector, Nucl. Instrum. Methods A 374 (1996) 164-187. https://doi.org/10.1016/0168-9002(96)00220-3
  12. Y. Declais, et al., Study of reactor antineutrino interaction with proton at BUGEY nuclear power plant, Phys. Lett. B 338 (1994) 383-389. https://doi.org/10.1016/0370-2693(94)91394-3
  13. G. Zacek, et al.,Neutrino-oscillation experiments at theGosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621-2636.
  14. H. Kwon, et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097-1111. https://doi.org/10.1103/PhysRevD.24.1097
  15. A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001. https://doi.org/10.1103/PhysRevD.64.112001
  16. M. Apollonio, et al., Search for neutrino oscillations on a long base-line at the Chooz nuclear power station, Eur. Phys. J. C 27 (2003) 331-374. https://doi.org/10.1140/epjc/s2002-01127-9
  17. Z.D. Greenwood, et al., Results of a two-position reactor neutrino-oscillation experiment, Phys. Rev. D 53 (1996) 6054-6064. https://doi.org/10.1103/PhysRevD.53.6054
  18. N.S. Bowden, et al., Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector, J. Appl. Phys. 105 (2009) 064902. https://doi.org/10.1063/1.3080251
  19. S. Abe, et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803. https://doi.org/10.1103/PhysRevLett.100.221803
  20. Y. Abe, et al., Improved measurements of the neutrino mixing angle ${\theta}_{13}$ with the double Chooz detector, J. High Energy Phys. 10 (2014) 086.
  21. F.P. An, et al., New measurement of antineutrino oscillation with the full detector configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802. https://doi.org/10.1103/PhysRevLett.115.111802
  22. J.H. Choi, et al., Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment, arXiv:1511.05849, 2015. https://doi.org/10.1103/PhysRevLett.116.211801
  23. Y. Oh, Neutrino Experiment for Oscillation at Short Baseline, Presentation at Applied Antineutrino Physics 2015 Workshop, Virginia Tech Research Center in Arlington, VA.
  24. Final Report: Focused Workshop on Antineutrino Detection for Safeguards Applications, 28-30 October 2008, IAEA Headquarters, Vienna, 2008.
  25. N.S. Bowden, et al., Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors, Nucl. Instrum. Methods A 572 (2007) 985-998. https://doi.org/10.1016/j.nima.2006.12.015
  26. A.C. Hayes, et al., Possible origins and implications of the shoulder in reactor neutrino spectra, Phys. Rev. D 92 (2015) 033015. https://doi.org/10.1103/PhysRevD.92.033015
  27. Djurcic, et al., JUNO Conceptual Design Report, arXiv:1508.07166, 2015.
  28. J. Ashenfelter, et al., The PROSPECT Physics Program, J. Instrum. 11 (2015) P11004.
  29. S. Oguri, et al., Reactor antineutrino monitoring with a plastic scintillator array at a new safeguards method, Nucl. Instrum. Methods. A 757 (2014) 33-39. https://doi.org/10.1016/j.nima.2014.04.065
  30. C. Lane, et al., NuLat: A New Type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications, arXiv:1501.06935, 2015.
  31. G. Mention, et al., Reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006. https://doi.org/10.1103/PhysRevD.83.073006
  32. H. Wan Chan Tseung, et al., Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy, Nucl. Instrum. Methods A 654 (2011) 318-323. https://doi.org/10.1016/j.nima.2011.06.095
  33. P. Dyer, et al., Cross sections relevant to gamma-ray astronomy: proton induced reactions, Phys. Rev. C 23 (1981) 1865-1882. https://doi.org/10.1103/PhysRevC.23.1865

Cited by

  1. Observation of coherent elastic neutrino-nucleus scattering vol.357, pp.6356, 2016, https://doi.org/10.1126/science.aao0990
  2. Signal imaging from S3-80-channel detector of reactor antineutrinos vol.15, pp.1, 2016, https://doi.org/10.1088/1748-0221/15/01/c01031
  3. Nonfuel antineutrino contributions in the ORNL High Flux Isotope Reactor (HFIR) vol.101, pp.5, 2016, https://doi.org/10.1103/physrevc.101.054605
  4. Development of Liquid Noble Gas Scintillation Detectors for Studying Coherent Elastic Neutrino-Nucleus Scattering vol.63, pp.5, 2016, https://doi.org/10.1134/s0020441220050188
  5. First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon vol.126, pp.1, 2016, https://doi.org/10.1103/physrevlett.126.012002
  6. Coherent elastic neutrino nucleus scatter response of semiconductor detectors to nuclear reactor antineutrinos vol.1004, pp.None, 2016, https://doi.org/10.1016/j.nima.2021.165342