Browse > Article
http://dx.doi.org/10.1016/j.net.2016.02.001

Detection of Antineutrinos for Reactor Monitoring  

Kim, Yeongduk (Center for Underground Physics, Institute of Basic Science)
Publication Information
Nuclear Engineering and Technology / v.48, no.2, 2016 , pp. 285-292 More about this Journal
Abstract
Reactor neutrinos have been detected in the past 50 years by various detectors for different purposes. Beginning in the 1980s, neutrino physicists have tried to use neutrinos to monitor reactors and develop an optimized detector for nuclear safeguards. Recently, motivated by neutrino oscillation physics, the technology and scale of reactor neutrino detection have progressed considerably. In this review, I will give an overview of the detection technology for reactor neutrinos, and describe the issues related to further improvements in optimized detectors for reactor monitoring.
Keywords
Gadolinium; Liquid Scintillator; Monitoring; Neutrinos; Oscillation; Reactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.L. Cowan, F. Reines, F.B. Harrison, H.W. Kruse, A.D. McGuire, Detection of the free neutrinos: a confirmation, Science 124 (1956) 103-104.   DOI
2 R.W. King, J.F. Perkins, Inverse beta decay and the twocomponent neutrino, Phys. Rev. 112 (1958) 963-966.   DOI
3 B.R. Davis, et al., Reactor antineutrino spectra and their application to antineutrino-induced reactions, Phys. Rev. C 19 (1979) 2259-2266.   DOI
4 P. Vogel, J. Engel, Neutrino electromagnetic form factors, Phys. Rev. D 39 (1989) 3378-3383.   DOI
5 P. Huber, T. Schwetz, Precision spectroscopy with reactor antineutrinos, Phys. Rev. D 70 (2004) 053011.   DOI
6 Th.A. Mueller, et al., Improved predictions of reactor antineutrino spectra, Phys. Rev. C 83 (2011) 054615.   DOI
7 P. Huber, Determination of antineutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617. Erratum, Phys. Rev. C85 (2012) 029901.   DOI
8 P. Vogel, J.F. Beacom, Angular distribution of neutron inverse beta decay, ${\bar{\nu}}+P{\rightarrow}e^+$ + n, Phys. Rev. D 60 (1999) 053003.   DOI
9 www.nndc.bnl.gov.
10 Y. Fukuda, et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562-1567.   DOI
11 M. Abbes, et al., The Bugey 3 neutrino detector, Nucl. Instrum. Methods A 374 (1996) 164-187.   DOI
12 Y. Declais, et al., Study of reactor antineutrino interaction with proton at BUGEY nuclear power plant, Phys. Lett. B 338 (1994) 383-389.   DOI
13 G. Zacek, et al.,Neutrino-oscillation experiments at theGosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621-2636.
14 H. Kwon, et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097-1111.   DOI
15 A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001.   DOI
16 M. Apollonio, et al., Search for neutrino oscillations on a long base-line at the Chooz nuclear power station, Eur. Phys. J. C 27 (2003) 331-374.   DOI
17 Z.D. Greenwood, et al., Results of a two-position reactor neutrino-oscillation experiment, Phys. Rev. D 53 (1996) 6054-6064.   DOI
18 Y. Abe, et al., Improved measurements of the neutrino mixing angle ${\theta}_{13}$ with the double Chooz detector, J. High Energy Phys. 10 (2014) 086.
19 N.S. Bowden, et al., Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector, J. Appl. Phys. 105 (2009) 064902.   DOI
20 S. Abe, et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803.   DOI
21 F.P. An, et al., New measurement of antineutrino oscillation with the full detector configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802.   DOI
22 J.H. Choi, et al., Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment, arXiv:1511.05849, 2015.   DOI
23 Y. Oh, Neutrino Experiment for Oscillation at Short Baseline, Presentation at Applied Antineutrino Physics 2015 Workshop, Virginia Tech Research Center in Arlington, VA.
24 Final Report: Focused Workshop on Antineutrino Detection for Safeguards Applications, 28-30 October 2008, IAEA Headquarters, Vienna, 2008.
25 N.S. Bowden, et al., Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors, Nucl. Instrum. Methods A 572 (2007) 985-998.   DOI
26 A.C. Hayes, et al., Possible origins and implications of the shoulder in reactor neutrino spectra, Phys. Rev. D 92 (2015) 033015.   DOI
27 Djurcic, et al., JUNO Conceptual Design Report, arXiv:1508.07166, 2015.
28 J. Ashenfelter, et al., The PROSPECT Physics Program, J. Instrum. 11 (2015) P11004.
29 C. Lane, et al., NuLat: A New Type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications, arXiv:1501.06935, 2015.
30 S. Oguri, et al., Reactor antineutrino monitoring with a plastic scintillator array at a new safeguards method, Nucl. Instrum. Methods. A 757 (2014) 33-39.   DOI
31 G. Mention, et al., Reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006.   DOI
32 H. Wan Chan Tseung, et al., Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy, Nucl. Instrum. Methods A 654 (2011) 318-323.   DOI
33 P. Dyer, et al., Cross sections relevant to gamma-ray astronomy: proton induced reactions, Phys. Rev. C 23 (1981) 1865-1882.   DOI