DOI QR코드

DOI QR Code

횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 투고 : 2016.04.11
  • 심사 : 2016.04.21
  • 발행 : 2016.04.30

초록

이 연구에서는 횡등방성 암석파괴함수의 개발에 활용할 수 있는 3가지 강도정수 공간분포함수를 제안하였다. 제안된 분포함수는 편구(oblate spheroid)분포함수, 지수분포함수, 강도정수텐서 방향투영함수이며 모두 2개의 모델파라미터로 정의된다. 제안된 분포함수들을 점착력과 마찰각의 공간분포함수로 활용하여 횡등방성 Mohr-Coulomb 파괴함수를 유도한 후 이를 활용하여 수치삼축시험을 모사하였다. 연약면의 경사각과 구속압의 변화에 따른 파괴축응력 변화 및 파괴면 방향 변화를 계산한 결과 3개의 분포함수을 적용한 경우 모두 실제 실험에서 관찰되는 이방성 파괴특성을 재현하고 있음을 확인하였다. 3개의 분포함수 중 강도정수텐서 방향투영함수를 채용한 경우가 가장 큰 파괴축강도를 계산하였으며 지수분포함수, 편구분포함수 순으로 낮은 파괴축강도 값을 예측하였다.

This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.

키워드

참고문헌

  1. Asadi, M. and M.H. Bagheripour, 2015, Modified criteria for sliding and non-sliding failure of anisotropic rocks, Int. J. Rock Mech. Min. Sci., 73, 95-101.
  2. Attewell, P.B. and M.R. Sandford, 1974, Intrinsic shear strength of a brittle, anisotropic rock - I: Experimental and mechanical interpretation, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 11, 423-430. https://doi.org/10.1016/0148-9062(74)90453-7
  3. Cazacu, O. and N.D. Cristescu, 1999, A paraboloid failure surface for transversely isotropic materials, Mechanics of Materials, 31, 381-393. https://doi.org/10.1016/S0167-6636(99)00008-3
  4. Duveau, G., J.F. Shao and J.P. Henry, 1998, Assessment of some failure criteria for strongly anisotropic geomaterials, Mech. Coh.-Fric. Mater., 3, 1-26. https://doi.org/10.1002/(SICI)1099-1484(199801)3:1<1::AID-CFM38>3.0.CO;2-7
  5. Donath, F.A., 1964, Strength variation and deformational behavior in anisotropic rock. In: Judd, W.R. (Ed.), State of stress in the Earth's crust, Elsevier, Amsterdam, 281-297.
  6. Hoek, E., 1983, Strength of jointed rock masses, Geotechnique, 33(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187
  7. Jaeger, J.C., 1960, Shear failure of anisotropic rocks. Geol. Mag., 97, 65-72. https://doi.org/10.1017/S0016756800061100
  8. Lee, Y.K., 2007, Prediction of strength for transversely isotropic rock based on critrical plane approach, Tunnel & Underground Space, Korean Society for Rock Mechanics, 17, 119-127.
  9. Lee, Y.K., 2008, An investigation of anisotropic tensile strength of transversely isotropic rock by critical plane approach, Tunnel & Underground Space, Korean Society for Rock Mechanics, 18, 194-201.
  10. Lee, Y.K. and B.H. Choi, 2011, Anisotropic version of Mohr-Coulomb failure criterion for transversely isotropic rock, Tunnel & Underground Space, Korean Society for Rock Mechanics, 21(3), 174-180.
  11. McLamore, R. and K.E. Gray, 1967, The mechanical behavior of anisotropic sedimentary rocks, J. Eng. Ind., Trans. ASME, 89, 62-73. https://doi.org/10.1115/1.3610013
  12. Niandou, H., J.F. Shao, J.P. Henry and D. Fourmaintraux, 1997, Laboratory investigation of the mechanical behaviour of Tournemire shale, Int. J. Rock Mech. Min. Sci., 34(1), 3-16. https://doi.org/10.1016/S1365-1609(97)80029-9
  13. Pietruszczak, S. and M. Mroz, 2000, Formulation of anisotropic failure criteria incorporating a microstructure tensor, Computers and Geotechnics, 26, 105-112. https://doi.org/10.1016/S0266-352X(99)00034-8
  14. Pietruszczak, S. and M. Mroz, 2001, On failure criteria for anisotropic cohesive-frictional materials, Int. J. Numer. Anal. Methods Geomech., 21, 509-524.
  15. Ramamurthy, T., 1993, Strength and modulus responses of anisotropic rocks, In: Hudson, J.A. (Ed.), Compressive Rock Engineering, Vol. 1-I Fundamentals, Pergamon Press, 313-329.
  16. Saeidi, O., R.G. Vaneghi, V. Rasouli, and R. Gholami, 2013, A modified empirical criterion for strength of transversely anisotropic rocks with metamorphic origin, Bull. Eng. Geol. Environ., 72, 257-269. https://doi.org/10.1007/s10064-013-0472-9
  17. Saroglou, H. and G. Tsiambaos, 2008, A modified Hoek- Brown failure criterion for anisotropic intact rock, Int. J. Rock Mech. Min. Sci., 45, 223-234. https://doi.org/10.1016/j.ijrmms.2007.05.004
  18. Tiwari, R.P. and K.S. Rao, 2007, Response of an anisotropic rock mass under polyaxial stress state, J. Mater. Civil Eng., 19(5), 393-403. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(393)
  19. Whittles, D.N., E. Yasar, D.J. Reddish and P.W. Lloyd, 2002, Anisotropic strength and stiffness properties of some UK coal measure siltstones, Quaterly J. Eng. Geol. Hydrogeol., 35, 155-166. https://doi.org/10.1144/1470-9236/1999-29