• 제목/요약/키워드: Direction of failure plane

검색결과 59건 처리시간 0.021초

GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가 (Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake)

  • 문상기
    • 자원환경지질
    • /
    • 제33권2호
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening

  • Zou, Jin-Feng;Chen, Kai-Fu;Pan, Qiu-Jing
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.907-928
    • /
    • 2017
  • The effects of seepage force and out-of-plane stress on cavity contracting and tunnel opening was investigated in this study. The generalized Hoek-Brown (H-B) failure criterion and non-associated flow rule were adopted. Because of the complex solution of pore pressure in an arbitrary direction, only the pore pressure through the radial direction was assumed in this paper. In order to investigate the effect of out-of-plane stress and seepage force on the cavity contraction and circular tunnel opening, three cases of the out-of-plane stress being the minor, intermediate, or major principal stress are assumed separately. A method of plane strain problem is adopted to obtain the stress and strain for cavity contracting and circular tunnel opening for three cases, respectively, that incorporated the effects of seepage force. The proposed solutions were validated by the published results and the correction is verified. Several cases were analyzed, and parameter studies were conducted to highlight the effects of seepage force, H-B constants, and out-of-plane stress on stress, displacement, and plastic radius with the numerical method. The proposed method may be used to address the complex problems of cavity contraction and tunnel opening in rock mass.

임계면법을 이용한 횡등방성 암석의 이방성 인장강도 해석 (An Investigation of Anisotropic Tensile Strength of Transversely Isotropic Rock by Critical Plane Approach)

  • 이연규
    • 터널과지하공간
    • /
    • 제18권3호
    • /
    • pp.194-201
    • /
    • 2008
  • 횡등방성 암석의 인장강도 특성 해석을 위하여 새로운 이방성 인장파괴함수를 제안하였다. 제안된 함수에서 인장강도는 연약면과 수직한 방향에서 최소가 되며 연약면과 평행한 방향쪽으로 지수함수적으로 증가하면서 최대값에 수렴된다. 제안된 이방성 인장파괴함수는 실험적으로 측정이 가능한 3개의 강도정수로 정의된다. 제안된 함수를 임계면법에 적용하여 연약면의 방향성에 따른 횡등방성 암석의 인장강도 및 파괴면의 방향을 탐색할 수 있는 수치해석적 기법을 제시하였다. 문헌에 보고된 횡등방성 암석의 직접인장시험 결과를 모사함으로써 제안된 방법의 적합성을 검토하였다. 수치해석결과와 직접인장시험 결과는 전반적으로 유사한 결과를 보여주었다.

입방체형 삼축시험에 의한 다짐화강토의 전단강도 특성 (Strength Characteristics of Decomposed Granite Soil in Cubical Triaxial Test)

  • 정진섭;김찬기;박승해;김기황
    • 한국농공학회지
    • /
    • 제38권6호
    • /
    • pp.64-73
    • /
    • 1996
  • The three-dimensional strength behavior of compacted decomposed granite soil was studied using cubical triaxial tests with independent control of the three principal stresses. All specimens were loaded under conditions of principal stress direction fixed and aligned with the directions of compacted plane. For comparable test conditions, the major principal strain and volume strain to failure were smallest when the major principal stress acted perpendicular to the compacted plane. The opposite extremes were obtained when the major principal stress acted parallel to the compacted plane. In cubical triaxial tests with same b values and with ${\theta}$ values in one of three sectors of the octahedral plane, independent of the range of ${\theta}$, higher friction angles are obtained in tests with b greater than in triaxial compression tests in which b 0.0, Comparison between the results of the drained cubical triaxial tests on lksan compacted decomposed granite soil and the cross section of the Mohr-Coulomb failure surface as well as the cross section of the Mohr-Coulomb failure surface were made. Lade's isotropic failure criterion based on vertical specimens overestimates the strengths for tests performed with values of 0 between 90˚ and 1 50˚ the Mohr-Coulomb criterion generally underestimates the strengths of tests performed with values of ${\theta}$ between $0^{\circ}$ and $180^{\circ}$ except around the $120^{\circ}$.

  • PDF

압상토의 3차원 거동 (Three-Dimensional Behavior of Granular Soil)

  • 정진섭
    • 한국농공학회지
    • /
    • 제37권2호
    • /
    • pp.64-72
    • /
    • 1995
  • A series of cubical triaxial tests with three independent principal stresses was per- formed on Baekma river sand( # 40~100). It was found that the major principal strain at failure remained approximately constant for b values larger than about 0.3 for both the drained and undrained condition, and thereafter increased as b value decreased. The test results showed that the direction of the strain increment at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results were thus not in agreement with the normality condition from classic plasticity theory. Howev- er, it was found that the projections of the plastic strain increment vectors on the octahe- dral plane were perpendicular to the failure surface in that plane. Failure strength in terms of effective stress anlaysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion. The effective stress failure surfaces for both the drained and undrained condition were estimated quite well by use of Lade's failure criterion.

  • PDF

면외 변형률 분포의 비선형성을 고려한 RC 기둥의 2차원 해석에 관한 연구 (2-dimensional analytical method of RC column considering nonlinearity of strain distribution in out-of-plane direction)

  • 김익현;이종석;정혁창
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.621-624
    • /
    • 2003
  • The columns with large widths in out-of-plane direction fail showing the high nonlinearity of strain distribution. In order to predict the nonlinear behavior with reasonable accuracy in 2 dimensional analysis the material models taking this characteristic into account are indispensible. In this study equivalent softening model is developed which releases the same amount of energy at failure as that of 3-D analysis. Its validity is confirmed by comparing the analysis result with that of 3-D.

  • PDF

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석 (An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure)

  • 김광수
    • 한국안전학회지
    • /
    • 제23권3호
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • 한국지구과학회지
    • /
    • 제25권1호
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.