DOI QR코드

DOI QR Code

Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants

내부육각 연결형 임플란트에서 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도의 비교

  • Kim, Young-Ho (Department of Prosthodontics, College of Dentistry, Wonkwang University) ;
  • Cho, Hye-Won (Department of Prosthodontics, College of Dentistry, Wonkwang University)
  • 김영호 (원광대학교 치과대학 치과보철학교실) ;
  • 조혜원 (원광대학교 치과대학 치과보철학교실)
  • Received : 2016.01.21
  • Accepted : 2016.03.21
  • Published : 2016.04.29

Abstract

Purpose: The aim of this study was to evaluate the fit accuracy of two zirconia and titanium abutments in internal hexagonal implants. Materials and methods: One titanium abutment and two zirconia abutments were tested in internal hexagonal implants (TSV, Zimmer). Prefabricated zirconia abutments (ZirAce, Acucera) and customized zirconia abutments milled by the Zirkonzahn system (Zirkonzahn Max, Zirkonzahn) were selected and prefabricated titanium abutments (Hex-Lock, Zimmer) were used as a control. Eight abutments per group were connected to implants with 30 Ncm torque. The marginal gaps at abutment-implant interface, the internal gaps at internal hex, vertical and horizontal gaps between screws and screw seats in abutments were measured after sectioning the embedded specimens using a scanning electron microscope. Data analysis included one-way analysis of variance and the Scheffe test (n=16, ${\alpha}=0.05$). Results: The mean marginal gap of customized zirconia abutment was higher than those of two prefabricated zirconia and titanium abutments. The internal gaps at internal hex showed no significant differences between customized and prefabricated abutments and were higher than those of prefabricated titanium abutments. The mean vertical and horizontal gaps at screw in prefabricated zirconia abutment were higher than those of prefabricated titanium abutment. In the case of customized zirconia abutment, the mean horizontal gap at screw was higher than those of both the prefabricated zirconia and the titanium abutment but the mean vertical gap was not even measureable. The screw seats were clearly formed but did not match with abutment screws in prefabricated zirconia abutments. They were not, however, precisely formed in the case of customized zirconia abutments. Conclusion: Within the limitations of this study, the prefabricated titanium abutments showed better fit than the zirconia abutments, regardless of customized or prefabricated. Also, the customized zirconia abutments showed significantly higher marginal gaps and the fit was less accurate between screws and screw seats than the prefabricated abutments, titanium and zirconia.

목적: 본 연구의 목적은 내부육각 연결형 임플란트에서 두 가지 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도를 비교하고자 하였다. 재료 및 방법: 티타늄 지대주와 두 종류의 지르코니아 지대주를 내부육각연결 구조형 임플란트(TSV, Zimmer)에 체결하였다. 기성 티타늄 지대주(Hex-Lock, Zimmer)를 대조군으로 하여, 기성 지르코니아 지대주(ZirAce, Acucera)와 copy milling 시스템(Zirkonzahn Max, Zirkonzahn)으로 제작한 맞춤형 지르코니아 지대주를 비교하였다. 임플란트 고정체에 30 Ncm의 토크로 지대주를 연결하였으며, 각 실험군 당 8개의 시편을 제작하였다. 아크릴 레진에 포매하여 절단시편을 제작한 후 주사전자현미경으로 고정체-임플란트 계면에서 변연간극과 내부육각 내면간극을 측정하고, 지대주 나사와 지대주 나사받침 사이 계면에서 수직 및 수평간극을 측정했다. 측정치는 일원배치분산분석과 Scheffe test로 통계 처리하였다(${\alpha}=0.05$). 결과: 맞춤형 지르코니아 지대주의 변연 간극은 두 가지 기성 지대주에 비해 컸다. 내부육각 내면간극은 맞춤형 지르코니아 지대주와 기성 지르코니아 지대주 사이에 유의차를 보이지 않았고 기성 티타늄 지대주보다 컸다. 기성 지르코니아 지대주의 지대주 나사 수직간극과 수평간극은 기성 티타늄 지대주보다 컸다. 맞춤형 지르코니아 지대주의 경우. 지대주 나사 수평간극은 두 가지 기성 지대주보다 컸으며, 지대주 나사 수직간극을 측정할 수 없었다. 기성 지르코니아 지대주는 나사받침이 명확하게 형성되어 있었으나, 나사받침의 형태가 지대주 나사와 조화되지 않았다. 맞춤형 지르코니아 지대주의 경우에는 나사받침이 명확하게 형성되어 있지 않았다. 결론: 내부육각 연결형 임플란트에서 기성 티타늄 지대주가 두 종류의 지르코니아 지대주보다 적합도가 좋았다. 맞춤형 지르코니아 지대주는 두가지 기성 지대주에 비해 변연간극이 크고 나사와 나사받침 사이의 적합도가 낮았다.

Keywords

References

  1. Andersson B, Odman P, Lindvall AM, Branemark PI. Cemented single crowns on osseointegrated implants after 5 years: results from a prospective study on CeraOne. Int J Prosthodont 1998;11:212-8.
  2. Yildirim M, Edelhoff D, Hanisch O, Spiekermann H. Ceramic abutments--a new era in achieving optimal esthetics in implant dentistry. Int J Periodontics Restorative Dent 2000;20:81-91.
  3. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  4. Heydecke G, Butz F, Hussein A, Strub JR. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. J Prosthet Dent 2002;87:438-45. https://doi.org/10.1067/mpr.2002.123849
  5. Jeong HC. Fracture strength of zirconia monolithic crowns. J Korean Acad Prosthodont 2006;44:157-64.
  6. Shin ES, Lee YS, Park WH. Comparative study in fracture strength of zirconia cores fabricated with three different CAD/CAM systems. J Korean Acad Prosthodont 2008;46:22-30.
  7. Kwon YJ, Lee YS, Park WH. Comparative study in marginal adaptation of zirconia cores fabricated with three different CAD/CAM systems. J Korean Acad Prosthodont 2008;46:12-21.
  8. Sicilia A, Quirynen M, Fontolliet A, Francisco H, Friedman A, Linkevicius T, Lutz R, Meijer HJ, Rompen E, Rotundo R, Schwarz F, Simion M, Teughels W, Wennerberg A, Zuhr O. Longterm stability of peri-implant tissues after bone or soft tissue augmentation. Effect of zirconia or titanium abutments on peri-implant soft tissues. Summary and consensus statements. The 4th EAO Consensus Conference 2015. Clin Oral Implants Res 2015;26:148-52.
  9. Linkevicius T, Vaitelis J. The effect of zirconia or titanium as abutment material on soft peri-implant tissues: a systematic review and meta-analysis. Clin Oral Implants Res 2015;26:139-47.
  10. Canullo L. Clinical outcome study of customized zirconia abutments for single-implant restorations. Int J Prosthodont 2007;20:489-93.
  11. Park JI, Lee Y, Lee JH, Kim YL, Bae JM, Cho HW. Comparison of fracture resistance and fit accuracy of customized zirconia abutments with prefabricated zirconia abutments in internal hexagonal implants. Clin Implant Dent Relat Res 2013;15:769-78.
  12. Zembic A, Philipp AO, Hammerle CH, Wohlwend A, Sailer I. Eleven-Year Follow-Up of a Prospective Study of Zirconia Implant Abutments Supporting Single All-Ceramic Crowns in Anterior and Premolar Regions. Clin Implant Dent Relat Res 2015;17:e417-26. https://doi.org/10.1111/cid.12263
  13. Jansen VK, Conrads G, Richter EJ. Microbial leakage and marginal fit of the implant-abutment interface. Int J Oral Maxillofac Implants 1997;12:527-40.
  14. Gomes AL, Montero J. Zirconia implant abutments: a review. Med Oral Patol Oral Cir Bucal 2011;16:e50-5.
  15. Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent 2013;110:447-454. https://doi.org/10.1016/j.prosdent.2013.08.003
  16. Byrne D, Houston F, Cleary R, Claffey N. The fit of cast and premachined implant abutments. J Prosthet Dent 1998;80:184-92. https://doi.org/10.1016/S0022-3913(98)70108-8
  17. Yuzugullu B, Avci M. The implant-abutment interface of alumina and zirconia abutments. Clin Implant Dent Relat Res 2008;10:113-21. https://doi.org/10.1111/j.1708-8208.2007.00071.x
  18. Kanno T, Milleding P, Wennerberg A. Topography, microhardness, and precision of fit on ready-made zirconia abutment before/after sintering process. Clin Implant Dent Relat Res 2007;9:156-65. https://doi.org/10.1111/j.1708-8208.2007.00044.x
  19. Hjerppe J, Lassila LV, Rakkolainen T, Narhi T, Vallittu PK. Loadbearing capacity of custom-made versus prefabricated commercially available zirconia abutments. Int J Oral Maxillofac Implants 2011;26:132-8.
  20. Baldassarri M, Hjerppe J, Romeo D, Fickl S, Thompson VP, Stappert CF. Marginal accuracy of three implant-ceramic abutment configurations. Int J Oral Maxillofac Implants 2012;27:537-43.
  21. Ribeiro IL, Campos F, Sousa RS, Alves ML, Rodrigues DM, Souza RO, Bottino MA. Marginal and internal discrepancies of zirconia copings: effects of milling system and finish line design. Indian J Dent Res 2015;26:15-20. https://doi.org/10.4103/0970-9290.156790
  22. Alikhasi M, Monzavi A, Bassir SH, Naini RB, Khosronedjad N, Keshavarz S. A comparison of precision of fit, rotational freedom, and torque loss with copy-milled zirconia and prefabricated titanium abutments. Int J Oral Maxillofac Implants 2013;28:996-1002. https://doi.org/10.11607/jomi.2937
  23. Gilbert AB, Yilmaz B, Seidt JD, McGlumphy EA, Clelland NL, Chien HH. Three-Dimensional Displacement of Nine Different Abutments for an Implant with an Internal Hexagon Platform. Int J Oral Maxillofac Implants 2015;30:781-8. https://doi.org/10.11607/jomi.3678
  24. Hoyer SA, Stanford CM, Buranadham S, Fridrich T, Wagner J, Gratton D. Dynamic fatigue properties of the dental implant-abutment interface: joint opening in wide-diameter versus standard-diameter hex-type implants. J Prosthet Dent 2001;85:599-607. https://doi.org/10.1067/mpr.2001.115250
  25. Sui X, Wei H, Wang D, Han Y, Deng J, Wang Y, Wang J, Yang J. Experimental research on the relationship between fit accuracy and fracture resistance of zirconia abutments. J Dent 2014;42:1353-9. https://doi.org/10.1016/j.jdent.2014.02.008
  26. Smith NA, Turkyilmaz I. Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values. J Prosthet Dent 2014;112:561-7. https://doi.org/10.1016/j.prosdent.2013.11.010
  27. Abdelhamed MI, Galley JD, Bailey MT, Johnston WM, Holloway J, McGlumphy E, Leblebicioglu B. A Comparison of Zirconia and Titanium Abutments for Microleakage. Clin Implant Dent Relat Res 2015;17:e643-51. https://doi.org/10.1111/cid.12301
  28. Park SD, Lee Y, Kim YL, Yu SH, Bae JM, Cho HW. Microleakage of different sealing materials in access holes of internal connection implant systems. J Prosthet Dent 2012;108:173-80. https://doi.org/10.1016/S0022-3913(12)60143-7
  29. Kang DR, Shim JS, Moon HS, Lee KW. Marginal fidelity of zirconia core using MAD/MAM system. J Korean Acad Prosthodont 2010;48:1-7. https://doi.org/10.4047/jkap.2010.48.1.1
  30. Lee JH, Kim DG, Park CJ, Cho LR. Axial displacements in external and internal implant-abutment connection. Clin Oral Implants Res 2014;25:e83-9. https://doi.org/10.1111/clr.12062

Cited by

  1. Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure vol.74, pp.4, 2020, https://doi.org/10.12989/sem.2020.74.4.567